Electrochemical sensors are analytical devices valued for their reliability, speed, ease of use, low cost, and portability, qualities that make them ideal for in situ analyses. The development of an electrochemical sensor follows an iterative process that begins with the analysis of the application context, proceeds through the selection of electrode material and the definition of measurement conditions, and concludes with the analysis of the target matrix. In this thesis, the development of an amperometric sensor for the analysis of Cannabis sativa L. samples is examined, a particularly relevant case study. There are various chemotypes of C. sativa that differ in cannabinoid composition. Recreational C. sativa, or marijuana, is rich in Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive compound, whereas fiber-type C. sativa contains low amounts of Δ9-THC and high levels of cannabidiol (CBD), a non-psychoactive compound. European and U.S. regulations allow the commercialization of C. sativa products only if the Δ9-THC content is below 0.3% w/w, making precise control of this cannabinoid essential. In this study, we propose for the first time a method based on amperometric sensor for the rapid screening of C. sativa plants. The target molecules identified for electrochemical analysis are Δ9-THC, CBD, and their acidic precursors, Δ9-THCA and CBDA, all of which are easily oxidizable. Initial tests on standard solutions of individual cannabinoids demonstrated the effectiveness of screen-printed electrodes modified with carbon black (SPE-CB) under defined measurement conditions. Sensor performance was evaluated under critical conditions, such as the detection of Δ9-THC in the presence of large amounts of CBD, a common issue in real samples. Given the similarity of the voltammetric responses of Δ9-THC and CBD, multivariate techniques were employed to obtain the desired information. The electrochemical analysis of the acidic precursors, characterized by voltammograms distinct from their neutral forms, highlighted the importance of the measurement conditions in determining the shape of the obtained signal. The integration of UV-Vis spectroscopy and fluorescence techniques further enriched the analytical framework, opening new avenues for research. Subsequently, the study was extended to real samples consisting of alcoholic extracts of C. sativa. The sensor was used for two main objectives: the quantification of major cannabinoids and the rapid identification of illegal samples. This required the analysis of numerous C. sativa samples from both fiber-type and recreational varieties, employing both univariate and multivariate approaches for data processing. A method for the quantification of Δ9-THCA, the main cannabinoid in recreational C. sativa varieties, was developed, and classification models capable of distinguishing legal from illegal samples based on Δ9-THC content were constructed. In both cases, the results obtained were satisfactory and consistent with chromatographic data. Finally, a prototype of a portable device for in situ analysis of C. sativa extracts was developed in collaboration with an engineering research group. This device automates the preparation of the solution for the electrochemical analysis, starting from the plant sample, minimizing operator intervention. The system integrates micropumps, flow sensors, and an electrochemical cell housing the SPE-CB. Preliminary tests confirmed the device’s effectiveness, demonstrating that it enables rapid and comprehensive analysis of C. sativa plant samples.
I sensori elettrochimici sono dispositivi analitici apprezzati per la loro affidabilità, rapidità, facilità d’uso, basso costo e portabilità, caratteristiche che li rendono ideali per analisi in situ. Lo sviluppo di un sensore elettrochimico segue un processo iterativo che inizia con l’analisi del contesto applicativo, passa per la scelta del materiale elettrodico e la definizione delle condizioni di misura, e termina con l’analisi della matrice target. In questa tesi, si esamina lo sviluppo di un sensore amperometrico per l'analisi dei campioni di Cannabis sativa L., un caso di studio particolarmente rilevante. Esistono vari chemotipi di C. sativa che differiscono per la composizione in cannabinoidi. La C. sativa ricreativa, o marijuana, è ricca di Δ9-tetraidrocannabinolo (Δ9-THC), un composto psicoattivo, mentre la C. sativa da fibra contiene basse quantità di Δ9-THC e alti livelli di cannabidiolo (CBD), non psicoattivo. Normative europee e statunitensi consentono la commercializzazione di prodotti a base di C. sativa solo se il contenuto di Δ9-THC è inferiore allo 0.3 % p/p, rendendo essenziale un controllo accurato dei livelli di questo cannabinoide. In questo studio proponiamo, per la prima volta, un metodo basato sulla sensoristica amperometrica per lo screening rapido delle piante di C. sativa. Le molecole target identificate per l'analisi elettrochimica sono il Δ9-THC, il CBD e i loro precursori acidi, Δ9-THCA e CBDA, tutte facilmente ossidabili. I test iniziali su soluzioni standard dei singoli cannabinoidi hanno dimostrato l’efficacia degli elettrodi screen-printed modificati con carbon black (SPE-CB) in definite condizioni di misura. Le prestazioni del sensore sono state valutate in condizioni critiche, come la rilevazione di Δ9-THC in presenza di grandi quantità di CBD, problematica frequente nei campioni reali. Data la somiglianza delle risposte voltammetriche di Δ9-THC e CBD, si sono impiegate tecniche multivariate per ottenere le informazioni desiderate. L'analisi elettrochimica dei precursori acidi, caratterizzati da voltammogrammi distinti rispetto alle forme neutre, ha evidenziato l'importanza delle condizioni di misura nel determinare la forma del segnale ottenuto. L'integrazione di tecniche di spettroscopia UV-Vis e di fluorescenza ha ulteriormente arricchito il quadro analitico, aprendo nuove prospettive di ricerca. Successivamente, lo studio è stato esteso a campioni reali, costituiti da estratti alcolici di C. sativa. Il sensore è stato utilizzato per due obiettivi principali: la quantificazione dei principali cannabinoidi e la rapida identificazione di campioni illegali. Questo ha richiesto l'analisi di numerosi campioni di C. sativa da fibra e ricreativa, impiegando sia approcci univariati che multivariati per l’elaborazione dei dati. È stato sviluppato un metodo per la quantificazione del Δ9-THCA, il cannabinoide principale nelle varietà di C. sativa ricreativa, e costruiti modelli di classificazione in grado di distinguere i campioni legali da quelli illegali sulla base del contenuto di Δ9-THC. In entrambi i casi, i risultati ottenuti sono stati soddisfacenti e in linea con i dati cromatografici. Infine, è stato sviluppato un prototipo di dispositivo portatile per l'analisi in situ degli estratti di C. sativa, in collaborazione con un gruppo di ricerca di ingegneria. Questo dispositivo automatizza la preparazione della soluzione per l’analisi elettrochimica a partire dal campione vegetale, riducendo al minimo l’intervento dell’operatore. Il sistema integra micropompe, sensori di flusso e una cella elettrochimica in cui è alloggiato l’SPE-CB. I test preliminari hanno confermato l’efficacia del dispositivo, dimostrando che consente un'analisi completa e rapida di campioni vegetali di C. sativa.
Sviluppo di sensori amperometrici per l’analisi in situ di matrici reali. Il caso di studio della Cannabis sativa L.
MONARI, ALESSANDRO
2025
Abstract
Electrochemical sensors are analytical devices valued for their reliability, speed, ease of use, low cost, and portability, qualities that make them ideal for in situ analyses. The development of an electrochemical sensor follows an iterative process that begins with the analysis of the application context, proceeds through the selection of electrode material and the definition of measurement conditions, and concludes with the analysis of the target matrix. In this thesis, the development of an amperometric sensor for the analysis of Cannabis sativa L. samples is examined, a particularly relevant case study. There are various chemotypes of C. sativa that differ in cannabinoid composition. Recreational C. sativa, or marijuana, is rich in Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive compound, whereas fiber-type C. sativa contains low amounts of Δ9-THC and high levels of cannabidiol (CBD), a non-psychoactive compound. European and U.S. regulations allow the commercialization of C. sativa products only if the Δ9-THC content is below 0.3% w/w, making precise control of this cannabinoid essential. In this study, we propose for the first time a method based on amperometric sensor for the rapid screening of C. sativa plants. The target molecules identified for electrochemical analysis are Δ9-THC, CBD, and their acidic precursors, Δ9-THCA and CBDA, all of which are easily oxidizable. Initial tests on standard solutions of individual cannabinoids demonstrated the effectiveness of screen-printed electrodes modified with carbon black (SPE-CB) under defined measurement conditions. Sensor performance was evaluated under critical conditions, such as the detection of Δ9-THC in the presence of large amounts of CBD, a common issue in real samples. Given the similarity of the voltammetric responses of Δ9-THC and CBD, multivariate techniques were employed to obtain the desired information. The electrochemical analysis of the acidic precursors, characterized by voltammograms distinct from their neutral forms, highlighted the importance of the measurement conditions in determining the shape of the obtained signal. The integration of UV-Vis spectroscopy and fluorescence techniques further enriched the analytical framework, opening new avenues for research. Subsequently, the study was extended to real samples consisting of alcoholic extracts of C. sativa. The sensor was used for two main objectives: the quantification of major cannabinoids and the rapid identification of illegal samples. This required the analysis of numerous C. sativa samples from both fiber-type and recreational varieties, employing both univariate and multivariate approaches for data processing. A method for the quantification of Δ9-THCA, the main cannabinoid in recreational C. sativa varieties, was developed, and classification models capable of distinguishing legal from illegal samples based on Δ9-THC content were constructed. In both cases, the results obtained were satisfactory and consistent with chromatographic data. Finally, a prototype of a portable device for in situ analysis of C. sativa extracts was developed in collaboration with an engineering research group. This device automates the preparation of the solution for the electrochemical analysis, starting from the plant sample, minimizing operator intervention. The system integrates micropumps, flow sensors, and an electrochemical cell housing the SPE-CB. Preliminary tests confirmed the device’s effectiveness, demonstrating that it enables rapid and comprehensive analysis of C. sativa plant samples.File | Dimensione | Formato | |
---|---|---|---|
PhD_tesi_Monari_Alessandro.pdf
embargo fino al 27/01/2028
Dimensione
8.21 MB
Formato
Adobe PDF
|
8.21 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189221
URN:NBN:IT:UNIMORE-189221