This research aims to investigate, study, and develop bio-based building materials in response to the growing focus on environmental protection, sustainable development, and the circular economy, which have become increasingly urgent due to the ongoing climate crisis. At the core of bio-building is the goal of fostering an ecological transition to significantly reduce greenhouse gas emissions, particularly those associated with "embodied carbon," which refers to the emissions related to the design, production, and transportation of building materials. The construction sector is the largest contributor to CO2 emissions, and while recent years have seen significant reductions in “operational carbon” (related to heating, cooling, and lighting of buildings), "embodied carbon" emissions have continued to rise. For this reason, public and private investments, encouraged by the increasingly stringent directives of the United Nations Environment Programme (UNEP), are increasingly directed towards the research of innovative, eco-compatible, low-impact, and easily recyclable materials. In this context, the collaboration with Litokol S.p.A. (Rubiera, Italy), a company committed to the development and innovation of its products with the aim of reducing their environmental impact without compromising quality, plays a key role. This partnership has led to the two case studies presented in this doctoral thesis. The first case study focuses on the research and development of organic fillers for epoxy mortars, aiming to partially replace the conventional inorganic filler, quartz flour. The environmental benefits of switching to organic fillers are numerous, ranging from the reduction of the environmental impact associated with the extraction, processing, and transportation of inorganic fillers, to the possibility of disposing of bio-based epoxy mortars through more sustainable processes, such as energy recovery, rather than controlled landfilling, which is currently used for traditional products. Additionally, the use of easily obtainable, renewable plant-based raw materials addresses supply chain challenges. The studied raw materials are divided into two categories: starchy (rice and corn flour) and lignocellulosic (olive stone powder, walnut shell, and coconut shell powder). Each raw material was thoroughly characterized from a chemical-physical perspective using analytical techniques (CHNS analysis, TGA, ESEM). Various epoxy mortar formulations were optimized, and their mechanical properties, chemical resistance, and long-term stability (aging) were studied. Thermal analysis (py-GC/MS and TGA) was also applied to assess thermal stability and obtain important structural information. The second case study addresses the formulation and optimization of hemp-lime biocomposites, known as "hempcrete," which are lightweight construction materials with sound-absorbing and thermal insulating properties. Despite their promising chemical-physical characteristics, these biocomposites face challenges such as long curing times, low durability in humid environments, and low mechanical strength, which limit their application. This study aims to address these issues by exploring different hemp-to-lime ratios and thermally pre-treating the hemp shiv to enhance its hydrophobic properties. Thermally pre-treated hemp shiv samples were thoroughly characterized using instrumental techniques (ESEM, TGA, HS-SPME-GC/MS), while the mechanical and physical properties of the different hempcrete formulations were also investigated. In both case studies, the collected data were processed using Principal Component Analysis (PCA), which provided important insights by integrating the results obtained from the various analytical techniques employed.
Questo lavoro di ricerca si propone di indagare, studiare e sviluppare materiali edilizi bio-based, rispondendo alla crescente attenzione verso la tutela ambientale, lo sviluppo sostenibile e l'economia circolare, temi resi sempre più urgenti dalla crisi climatica. Alla base della bioedilizia vi è l’obiettivo di promuovere una transizione ecologica che riduca significativamente le emissioni di gas serra, in particolare quelle legate al cosiddetto “carbonio incorporato”, ossia le emissioni derivanti dalla progettazione, produzione e trasporto di materiali edilizi. Il settore delle costruzioni rappresenta infatti il principale emettitore di CO2, e sebbene negli ultimi anni si siano registrati progressi nella riduzione del “carbonio operativo” (legato al riscaldamento, raffrescamento e illuminazione degli edifici), il “carbonio incorporato” continua a crescere. Per questo motivo, sia gli investimenti pubblici che quelli privati, incoraggiati dalle direttive sempre più stringenti del Programma delle Nazioni Unite per l’Ambiente (UNEP), sono orientati verso la ricerca di materiali innovativi, biocompatibili, a basso impatto ambientale e facilmente riciclabili. In questo contesto si inserisce la collaborazione con Litokol S.p.A. (Rubiera, Italia), azienda impegnata nello sviluppo e nell’innovazione dei propri prodotti con l’obiettivo di ridurre il loro impatto ambientale senza comprometterne la qualità. Tale collaborazione ha dato origine ai due casi di studio presentati in questa tesi. Il primo caso riguarda la ricerca e lo sviluppo di riempitivi organici per malte epossidiche, con l’obiettivo di sostituire parzialmente il riempitivo inorganico tradizionale, ossia la farina quarzifera. I benefici ambientali derivanti dall'impiego di filler organici sono molteplici: dalla riduzione dell’impatto ambientale associato all’estrazione, lavorazione e trasporto di materiali inorganici, alla possibilità di smaltire le malte epossidiche bio-based attraverso processi più sostenibili, come la termovalorizzazione, rispetto alle discariche controllate attualmente utilizzate. Inoltre, l’uso di materie prime vegetali facilmente reperibili e rinnovabili elimina i problemi legati all’approvvigionamento. Le materie prime analizzate si suddividono in due categorie: amidacee (farina di riso e mais) e lignocellulosiche (polvere di nocciolo d’oliva, guscio di noce e noce di cocco). Ogni materia prima è stata caratterizzata in modo approfondito dal punto di vista chimico-fisico mediante tecniche analitiche strumentali (CHNS, TGA, ESEM). Sono state quindi ottimizzate diverse formulazioni di malte epossidiche, studiate in termini di proprietà meccaniche, resistenza chimica e stabilità nel tempo (invecchiamento). L’analisi termica (py-GC/MS e TGA) ha inoltre permesso di valutare la stabilità termica e ottenere informazioni strutturali rilevanti. Il secondo caso di studio si concentra sulla formulazione e ottimizzazione di biocompositi calce-canapa, noti come "hempcrete", materiali edilizi alleggeriti con proprietà fonoassorbenti e termoisolanti. Nonostante le loro promettenti caratteristiche chimico-fisiche, questi biocompositi presentano criticità come lunghi tempi di presa, scarsa durabilità in ambienti umidi e bassa resistenza meccanica, che ne limitano l’applicabilità. Il presente studio si propone di superare tali problematiche, esplorando diverse proporzioni di calce e canapa e pretrattando termicamente il canapulo per migliorarne l’idrofobicità. I campioni di canapulo pretrattati sono stati analizzati tramite tecniche strumentali (ESEM, TGA, HS-SPME-GC/MS), mentre le formulazioni di hempcrete sono state valutate per le loro proprietà meccaniche e fisiche. In entrambi i casi di studio, i dati raccolti sono stati analizzati mediante l'Analisi delle Componenti Principali (PCA), che ha fornito informazioni rilevanti integrando i risultati delle numerose tecniche analitiche impiegate.
Materiali sostenibili per l'edilizia
D'EUSANIO, VERONICA
2025
Abstract
This research aims to investigate, study, and develop bio-based building materials in response to the growing focus on environmental protection, sustainable development, and the circular economy, which have become increasingly urgent due to the ongoing climate crisis. At the core of bio-building is the goal of fostering an ecological transition to significantly reduce greenhouse gas emissions, particularly those associated with "embodied carbon," which refers to the emissions related to the design, production, and transportation of building materials. The construction sector is the largest contributor to CO2 emissions, and while recent years have seen significant reductions in “operational carbon” (related to heating, cooling, and lighting of buildings), "embodied carbon" emissions have continued to rise. For this reason, public and private investments, encouraged by the increasingly stringent directives of the United Nations Environment Programme (UNEP), are increasingly directed towards the research of innovative, eco-compatible, low-impact, and easily recyclable materials. In this context, the collaboration with Litokol S.p.A. (Rubiera, Italy), a company committed to the development and innovation of its products with the aim of reducing their environmental impact without compromising quality, plays a key role. This partnership has led to the two case studies presented in this doctoral thesis. The first case study focuses on the research and development of organic fillers for epoxy mortars, aiming to partially replace the conventional inorganic filler, quartz flour. The environmental benefits of switching to organic fillers are numerous, ranging from the reduction of the environmental impact associated with the extraction, processing, and transportation of inorganic fillers, to the possibility of disposing of bio-based epoxy mortars through more sustainable processes, such as energy recovery, rather than controlled landfilling, which is currently used for traditional products. Additionally, the use of easily obtainable, renewable plant-based raw materials addresses supply chain challenges. The studied raw materials are divided into two categories: starchy (rice and corn flour) and lignocellulosic (olive stone powder, walnut shell, and coconut shell powder). Each raw material was thoroughly characterized from a chemical-physical perspective using analytical techniques (CHNS analysis, TGA, ESEM). Various epoxy mortar formulations were optimized, and their mechanical properties, chemical resistance, and long-term stability (aging) were studied. Thermal analysis (py-GC/MS and TGA) was also applied to assess thermal stability and obtain important structural information. The second case study addresses the formulation and optimization of hemp-lime biocomposites, known as "hempcrete," which are lightweight construction materials with sound-absorbing and thermal insulating properties. Despite their promising chemical-physical characteristics, these biocomposites face challenges such as long curing times, low durability in humid environments, and low mechanical strength, which limit their application. This study aims to address these issues by exploring different hemp-to-lime ratios and thermally pre-treating the hemp shiv to enhance its hydrophobic properties. Thermally pre-treated hemp shiv samples were thoroughly characterized using instrumental techniques (ESEM, TGA, HS-SPME-GC/MS), while the mechanical and physical properties of the different hempcrete formulations were also investigated. In both case studies, the collected data were processed using Principal Component Analysis (PCA), which provided important insights by integrating the results obtained from the various analytical techniques employed.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Veronica DEusanio.pdf
embargo fino al 27/01/2028
Dimensione
18.9 MB
Formato
Adobe PDF
|
18.9 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189228
URN:NBN:IT:UNIMORE-189228