Cardiovascular diseases remain the leading cause of death globally and impose significant economic burdens. The growing prevalence of cardiovascular diseases underscores the need for advanced prevention and management strategies. Artificial intelligence, specifically with machine learning and deep learning, offers transformative potential in cardiology for a wide range of tasks. This thesis explores the application of artificial intelligence in cardiovascular care, focusing on clinical prediction models, integration of multimodal data, and the development of algorithms for specific cardiovascular conditions. Additionally, it addresses the challenges of model validation and real-world applicability, proposing rigorous methodologies for improving artificial intelligence’s role in cardiology care.

Machine learning applications in cardiology

BAJ, GIOVANNI
2025

Abstract

Cardiovascular diseases remain the leading cause of death globally and impose significant economic burdens. The growing prevalence of cardiovascular diseases underscores the need for advanced prevention and management strategies. Artificial intelligence, specifically with machine learning and deep learning, offers transformative potential in cardiology for a wide range of tasks. This thesis explores the application of artificial intelligence in cardiovascular care, focusing on clinical prediction models, integration of multimodal data, and the development of algorithms for specific cardiovascular conditions. Additionally, it addresses the challenges of model validation and real-world applicability, proposing rigorous methodologies for improving artificial intelligence’s role in cardiology care.
3-feb-2025
Inglese
Machine learning; Deep learning; Cardiology; Prediction models; Survival analysis
SCAGNETTO, ARJUNA
BORTOLUSSI, LUCA
BARBATI, GIULIA
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
thesis_revised_frontespizio.pdf

accesso aperto

Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri
thesis_revised_frontespizio_1.pdf

accesso aperto

Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri
thesis_revised_frontespizio_2.pdf

accesso aperto

Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/189365
Il codice NBN di questa tesi è URN:NBN:IT:UNITS-189365