Multiple Myeloma (MM) is a hematological malignancy characterized by the proliferation of antibody-secreting bone marrow (BM) plasma cells (PCs). It is preceded by asymptomatic stages defined as Monoclonal Gammopathy of Undetermined Significance (MGUS) or Smoldering MM (SMM). MM is characterized by complex clonal architectures and crucial tumor microenvironment (TME) interactions. As a matter of fact, disease progression is driven by the dysregulated interaction of the PC population with the tumor microenvironment (TME). The PC population comprises clonal PCs (cPCs) and polyclonal PCs (pPCs). Although the roles of immune and non-immune cells have been extensively studied, the disruption of pPCs and their role in TME dysregulation have not been deeply studied. This thesis presents a cutting-edge investigation into the clonal and polyclonal landscape of MM, leveraging the power of single-cell RNA and VDJ sequencing (scRNAseq and scVDJseq) to provide a detailed exploration of both the genetic and transcriptomic landscapes of MM at single-cell resolution, with particular emphasis on pPCs, TME interactions and clonal evolution. The first major outcome of this work is the validation of scVDJseq as an effective tool for identifying MM-specific VDJ rearrangements, enabling detailed clonal tracking with higher precision. Our results demonstrate that single-cell analysis could reach a better resolution, uncovering key VDJ rearrangements in cPCs compared with traditional bulk DNA sequencing. Specifically, scVDJseq identified clonotypes and new subclonal populations, providing a comprehensive view of clonal diversity within the BM of MM patients. This technology also enabled precise identification of pPCs at various disease stages, offering a new framework for understanding clonal evolution from early asymptomatic to advanced symptomatic disease. Integrating with transcriptome data, we obtained crucial insights about pPCs. These exhibited distinct phenotypic changes, particularly in their interaction with the TME. Interestingly, we identified a progressive loss of key immune markers in pPCs across disease stages. This suggests that these cells may be underestimated in immune surveillance and the immune system's ability to recognize and respond to malignant cells. Moreover, the data showed that pPCs from MM patients undergo significant transcriptomic dysregulation, marked by increased expression of autophagy-related and inflammatory pathways, a pattern not observed in healthy donors (HDs). These findings suggest that pPCs may be actively reshaped by the TME, potentially contributing to immune evasion and disease progression. The dissertation also explores the phenomenon of immunoparesis, a hallmark of PC dyscrasia, in greater detail. Using scRNAseq data, we uncovered a unique gene signature in pPCs associated with immunoparesis, characterized by the upregulation of inflammatory and stress-related pathways. These findings point to a mechanistic link between the disruption of pPCs function and the failure of the immune system to surveil the tumor adequately, highlighting the complex interplay between pPCs, cPCs, and the TME. Additionally, our analysis revealed a significant depletion of pPCs in patients with immunoparesis, correlating with a reduction in immunoglobulin production and a more pro-inflammatory TME environment. The key result is the identification of a "healthy plasma cell" (hPC) signature. This novel signature, derived from PCs in HDs, was progressively lost across MM disease stages, correlating with poorer clinical outcomes. Patients whose polyclonal cells retained this hPC signature had significantly better progression-free survival (PFS) and overall survival (OS), suggesting that the preservation of functional pPCs may serve as a protective factor against disease progression. Building on these findings, a groundbreaking analysis of clonal evolution was conducted using the Dandelion tool for VDJ tracking. This tool allowed for precise mapping of clonal complexity and diversity as the disease progressed from asymptomatic to symptomatic stages. Suggesting that as MM progresses, clonal diversity expands, potentially contributing to treatment resistance. In conclusion, this dissertation advances our understanding of MM by leveraging cutting-edge single-cell technologies to dissect the clonal architecture and the role of the polyclonal counterpart, which is often overlooked. The research not only provides a refined picture of MM clonal dynamics but also underscores the potential clinical value of tracking pPCs signatures. These findings open the door to new research directions, including the development of targeted therapies aimed at restoring immune surveillance and normal PC function, with the ultimate goal of improving patient outcomes in MM.
Il Mieloma Multiplo (MM) è una neoplasia ematologica caratterizzata dalla proliferazione di plasmacellule (PCs) nel midollo osseo (BM) che secernono anticorpi. È preceduto da stadi asintomatici definiti come Gammapatia Monoclonale di Significato Indeterminato (MGUS) o Mieloma Multiplo Smouldering (SMM). Il MM presenta architetture clonali complesse e interazioni cruciali con il microambiente tumorale (TME). In effetti, la progressione della malattia è guidata dall’interazione disfunzionale tra la popolazione di PCs e il TME. La popolazione di PCs comprende sia PCs clonali (cPCs) sia PCs policlonali (pPCs). Sebbene i ruoli delle cellule immunitarie e non immunitarie siano stati ampiamente studiati, la perturbazione delle pPCs e il loro ruolo nella disregolazione del TME non sono stati approfonditamente analizzati. Questa tesi presenta un’indagine innovativa sul panorama clonale e policlonale del MM, sfruttando la potenza del sequenziamento a singola cellula di RNA e VDJ (scRNAseq e scVDJseq) per esplorare in dettaglio i paesaggi genetici e trascrittomici del MM a livello di singola cellula, con particolare enfasi sulle pPCs, sulle interazioni con il TME e sull’evoluzione clonale. Il primo risultato principale di questo lavoro è la validazione del scVDJseq come strumento efficace per identificare riarrangiamenti VDJ specifici del MM, consentendo un tracciamento clonale dettagliato con maggiore precisione. I nostri risultati dimostrano che l’analisi a singola cellula può raggiungere una risoluzione superiore, rivelando riarrangiamenti VDJ chiave nelle cPCs rispetto al tradizionale sequenziamento di DNA bulk. In particolare, scVDJseq ha identificato clonotipi e nuove sottopopolazioni clonali, fornendo una visione completa della diversità clonale all’interno del BM di pazienti con MM. Questa tecnologia ha inoltre permesso l’identificazione precisa delle pPCs in diversi stadi della malattia, offrendo un nuovo quadro per comprendere l’evoluzione clonale dalla fase asintomatica precoce alla malattia sintomatica avanzata. Integrando i dati trascrittomici, abbiamo ottenuto informazioni cruciali sulle pPCs, che mostrano cambiamenti fenotipici distinti, in particolare nella loro interazione con il TME. Abbiamo identificato una perdita progressiva di marcatori immunitari chiave nelle pPCs durante gli stadi della malattia, suggerendo che queste cellule potrebbero essere sottovalutate nel contesto della sorveglianza immunitaria e della capacità del sistema immunitario di riconoscere e rispondere alle cellule maligne. Inoltre, i dati hanno mostrato che le pPCs dei pazienti con MM subiscono una significativa disregolazione trascrittomica, caratterizzata da un’aumentata espressione di vie legate all’autofagia e all’infiammazione rispetto alle PCs dei donatori sani (HDs). Questi risultati suggeriscono che le pPCs potrebbero essere attivamente rimodellate dal TME, contribuendo potenzialmente all’evasione immunitaria e alla progressione della malattia. La tesi esplora inoltre in dettaglio il fenomeno dell’immunoparesi, un segno distintivo delle discrasie plasmacellulari. Utilizzando i dati scRNAseq, abbiamo derivato una firma genetica unica nelle pPCs associata all’immunoparesi, caratterizzata dalla regolazione di vie infiammatorie e legate allo stress. Questi risultati indicano un legame meccanicistico tra la perturbazione della funzione delle pPCs e l’incapacità del sistema immunitario nel sorvegliare adeguatamente il tumore, evidenziando la complessa interazione tra pPCs, cPCs e TME. Inoltre, la nostra analisi ha rivelato una significativa riduzione delle pPCs nei pazienti con immunoparesi, correlata a una diminuzione della produzione di immunoglobuline e a un ambiente TME più pro-infiammatorio. Un risultato chiave è l’identificazione di una firma di “plasmacellula sana” (hPC). Questa nuova firma, derivata dalle PCs degli HDs, è progressivamente persa negli stadi della malattia, correlando con esiti clinici peggiori. I pazienti le cui cellule policlonali mantenevano questa firma hPC mostravano una sopravvivenza libera da progressione (PFS) e una sopravvivenza globale (OS) significativamente migliori, suggerendo che la preservazione delle pPCs funzionali potrebbe fungere da fattore protettivo contro la progressione della malattia. Basandosi su questi risultati, è stata condotta un’analisi dell’evoluzione clonale utilizzando bioinformaticamente “Dandelion” per il tracciamento VDJ. Questo strumento ha permesso una mappatura precisa della complessità e diversità clonale man mano che la malattia progrediva dagli stadi asintomatici a quelli sintomatici, suggerendo che l’espansione della diversità clonale potrebbe contribuire alla resistenza ai trattamenti. In conclusione, questa tesi avanza la nostra comprensione del MM sfruttando tecnologie innovative a singola cellula per dissezionare l’architettura clonale e il ruolo della controparte policlonale, spesso trascurata. La ricerca non solo fornisce un quadro più raffinato delle dinamiche clonali del MM, ma sottolinea anche il potenziale valore clinico del monitoraggio delle firme delle pPCs. Questi risultati aprono la strada a nuove direzioni di ricerca, tra cui lo sviluppo di terapie mirate volte a ripristinare la sorveglianza immunitaria e la normale funzione delle PCs, con l’obiettivo finale di migliorare gli esiti clinici nei pazienti con MM.
MULTIPLE MYELOMA PLASMA CELL PROFILING: INTEGRATED SINGLE-CELL RNA AND VDJ SEQUENCING APPROACHES UNCOVER NOVEL CLINICAL INSIGHTS
MATERA, ANTONIO
2025
Abstract
Multiple Myeloma (MM) is a hematological malignancy characterized by the proliferation of antibody-secreting bone marrow (BM) plasma cells (PCs). It is preceded by asymptomatic stages defined as Monoclonal Gammopathy of Undetermined Significance (MGUS) or Smoldering MM (SMM). MM is characterized by complex clonal architectures and crucial tumor microenvironment (TME) interactions. As a matter of fact, disease progression is driven by the dysregulated interaction of the PC population with the tumor microenvironment (TME). The PC population comprises clonal PCs (cPCs) and polyclonal PCs (pPCs). Although the roles of immune and non-immune cells have been extensively studied, the disruption of pPCs and their role in TME dysregulation have not been deeply studied. This thesis presents a cutting-edge investigation into the clonal and polyclonal landscape of MM, leveraging the power of single-cell RNA and VDJ sequencing (scRNAseq and scVDJseq) to provide a detailed exploration of both the genetic and transcriptomic landscapes of MM at single-cell resolution, with particular emphasis on pPCs, TME interactions and clonal evolution. The first major outcome of this work is the validation of scVDJseq as an effective tool for identifying MM-specific VDJ rearrangements, enabling detailed clonal tracking with higher precision. Our results demonstrate that single-cell analysis could reach a better resolution, uncovering key VDJ rearrangements in cPCs compared with traditional bulk DNA sequencing. Specifically, scVDJseq identified clonotypes and new subclonal populations, providing a comprehensive view of clonal diversity within the BM of MM patients. This technology also enabled precise identification of pPCs at various disease stages, offering a new framework for understanding clonal evolution from early asymptomatic to advanced symptomatic disease. Integrating with transcriptome data, we obtained crucial insights about pPCs. These exhibited distinct phenotypic changes, particularly in their interaction with the TME. Interestingly, we identified a progressive loss of key immune markers in pPCs across disease stages. This suggests that these cells may be underestimated in immune surveillance and the immune system's ability to recognize and respond to malignant cells. Moreover, the data showed that pPCs from MM patients undergo significant transcriptomic dysregulation, marked by increased expression of autophagy-related and inflammatory pathways, a pattern not observed in healthy donors (HDs). These findings suggest that pPCs may be actively reshaped by the TME, potentially contributing to immune evasion and disease progression. The dissertation also explores the phenomenon of immunoparesis, a hallmark of PC dyscrasia, in greater detail. Using scRNAseq data, we uncovered a unique gene signature in pPCs associated with immunoparesis, characterized by the upregulation of inflammatory and stress-related pathways. These findings point to a mechanistic link between the disruption of pPCs function and the failure of the immune system to surveil the tumor adequately, highlighting the complex interplay between pPCs, cPCs, and the TME. Additionally, our analysis revealed a significant depletion of pPCs in patients with immunoparesis, correlating with a reduction in immunoglobulin production and a more pro-inflammatory TME environment. The key result is the identification of a "healthy plasma cell" (hPC) signature. This novel signature, derived from PCs in HDs, was progressively lost across MM disease stages, correlating with poorer clinical outcomes. Patients whose polyclonal cells retained this hPC signature had significantly better progression-free survival (PFS) and overall survival (OS), suggesting that the preservation of functional pPCs may serve as a protective factor against disease progression. Building on these findings, a groundbreaking analysis of clonal evolution was conducted using the Dandelion tool for VDJ tracking. This tool allowed for precise mapping of clonal complexity and diversity as the disease progressed from asymptomatic to symptomatic stages. Suggesting that as MM progresses, clonal diversity expands, potentially contributing to treatment resistance. In conclusion, this dissertation advances our understanding of MM by leveraging cutting-edge single-cell technologies to dissect the clonal architecture and the role of the polyclonal counterpart, which is often overlooked. The research not only provides a refined picture of MM clonal dynamics but also underscores the potential clinical value of tracking pPCs signatures. These findings open the door to new research directions, including the development of targeted therapies aimed at restoring immune surveillance and normal PC function, with the ultimate goal of improving patient outcomes in MM.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R13292.pdf
embargo fino al 07/01/2026
Dimensione
53.53 MB
Formato
Adobe PDF
|
53.53 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189863
URN:NBN:IT:UNIMI-189863