Extracellular nanoparticles (eNPs), including extracellular vesicles (EVs) and lipoproteins (LPs), play a crucial role in cell-to-cell communication and influence various physiological and pathological processes. Focusing on EVs, they hold particular promise in nanomedicine for diagnostics and therapeutics, representing a large biomarker space for liquid biopsies. However, overlapping of chemical-physical properties make it challenging a specific isolation, and accurate analysis of EVs. This PhD thesis aims to develop a highly sensitive method for analyzing single EV in real biofluids, with potential applications in clinical settings. The research addresses two major challenges in eNP analysis: detecting individual EV in complex biofluids and addressing EV surface marker variability. Additionally, interactions between different eNPs may lead to the formation of biologically relevant complexes. As part of this work, a preliminary investigation of EV-LP interactions was conducted using advanced, sensitive technologies. Chapter 2 presents a comparison between two highly sensitive digital platforms for immunophenotyping, which are crucial for addressing the complexity of real biofluids. Platforms based on SiMoA and SP-IRIS technologies were used to develop a protocol for evaluating EVs, and their performance was compared in terms of sensitivity and specificity. Chapter 3 introduces the Membrane Sensing Peptide (MSP), a pan-specific probe designed to address the heterogeneity of EV surface markers and enable unbiased EV analysis. Integrated into the SiMoA platform, MSP facilitates single EV analysis directly in real samples, demonstrating low affinity for LPs and high specificity for EVs. This method detects EVs independently of surface marker expression, as shown with Red Blood Cell-derived EVs (RBC-EVs). Clinically, this approach distinguished myocardial infarction patients from those with stable angina based on distinct EV-associated epitope signatures in serum and plasma, highlighting its diagnostic potential. Chapter 4 explores the applications of MSP, highlighting its versatility for both analytical and isolation purposes without introducing biases related to sub-population enrichment. During a six-month research period at ETH Zurich in Professor Arosio’s group, MSP was conjugated with a zwitterionic polymer coacervate to enable collective EV isolation and serve as a "one-pot assay" for EV biomarker analysis in complex fluids. 9 Chapter 5 describes a “bottom-up approach” using model systems (LDL, VLDL, and RBC-EVs) to investigate EV-LP interactions under physiological conditions. Advance immune-affinity technologies, including Super-Resolution Microscopy (SRM), Flow Cytometry (FACS), and Single Molecule Array (SiMoA), were employed to study these complexes in detail. In conclusion, this thesis introduces MSP as a novel pan-specific EV probe, offering a potential paradigm shift in the EV field. The results demonstrate MSP’s advantages in EV analysis and isolation, as well as its potential in clinical applications, paving the way for EV-based diagnostic assays. Additionally, a preliminary investigation into EV-LP interactions was conducted using high-sensitivity technologies.
Nanoparticelle extracellulari (eNP), comprendono le vescicole extracellulari (EV) e le lipoproteine (LP), entrambe svolgono un ruolo cruciale nella comunicazione cellula-cellula, influenzando numerosi processi fisiologici e patologici. In particolare, le EV rivestono un grande interesse nella nanomedicina, sia per la diagnostica che per la terapia, rappresentando un vasto spazio biomarcatore per le biopsie liquide. Tuttavia, le proprietà chimico-fisiche sovrapposte rendono difficile l'isolamento specifico e l'analisi accurata delle EV. Questa tesi di dottorato mira a sviluppare un metodo altamente sensibile per analizzare singole EV in biofluidi reali, con applicazioni potenziali in ambito clinico. La ricerca affronta due sfide principali nell'analisi delle eNP: il rilevamento della single EV in biofluidi complessi e la variabilità dei marcatori superficiali delle EV. Inoltre, le interazioni tra diverse eNP potrebbero portare alla formazione di complessi biologicamente rilevanti. Come parte di questo lavoro, è stata condotta un’indagine preliminare sulle interazioni tra EV e LP utilizzando tecnologie avanzate e sensibili. Il Capitolo 2 presenta un confronto tra due piattaforme digitali altamente sensibili per l’immuno-phenotyping, fondamentali per affrontare la complessità dei fluidi bniologici. Le piattaforme basate sulle tecnologie SiMoA e SP-IRIS sono state utilizzate per sviluppare un protocollo per la valutazione delle EV, confrontandone le prestazioni in termini di sensibilità e specificità. Il Capitolo 3 introduce il Membrane Sensing Peptide, (MSP), una sonda pan-specifica progettata per affrontare l'eterogeneità dei marcatori superficiali delle EV e consentire un'analisi imparziale delle EV. Integrato nella piattaforma SiMoA, MSP facilita l'analisi di singole EV direttamente in campioni reali, dimostrando una bassa affinità per le LP e un'elevata specificità per le EV. Questo metodo rileva le EV indipendentemente dall'espressione dei marcatori superficiali, come dimostrato con le EV derivate da globuli rossi (RBC-EVs). Dal punto di vista clinico, questo approccio ha permesso di distinguere i pazienti con infarto miocardico da quelli con angina stabile, basandosi su marcatori specifici associati alle EV presenti in siero e plasma, evidenziandone il potenziale diagnostico. Il Capitolo 4 esplora le applicazioni di MSP, evidenziandone la versatilità sia per scopi analitici che di isolamento, senza introdurre delle variabili legati all’arricchimento di sottopopolazioni. Durante un periodo di ricerca di sei mesi presso l’ETH di Zurigo, nel gruppo del professor Arosio, MSP è stato coniugato con un polimero zwitterionico coacervato per consentire l'isolamento collettivo delle EV e fungere da “one-pot assay” per l'analisi di biomarcatori EV in fluidi complessi. Il Capitolo 5 descrive un “approccio bottom-up” che utilizza sistemi modello (LDL, VLDL ed RBC-EVs) per studiare le interazioni EV-LP in condizioni fisiologiche. Tecnologie avanzate di immuno-affinità, tra cui Microscopie a Super-Risoluzione (SRM), Citometria a Flusso (FACS) e saggio a singola molecola (SiMoA), sono state impiegate per analizzare in dettaglio questi complessi. In conclusione, questa tesi introduce MSP come una nuova sonda pan-specifica per le EV, offrendo un potenziale cambio di paradigma nel campo delle EV. I risultati dimostrano i vantaggi di MSP nell'analisi e nell'isolamento delle EV, così come il suo potenziale in applicazioni cliniche, aprendo la strada a test diagnostici basati sulle EV. Inoltre, è stata condotta un'indagine preliminare sulle interazioni EV-LP utilizzando tecnologie ad alta sensibilità.
PAN-SPECIFIC PROBING AND SORTING OF EXTRACELLULAR NANOPARTICLES
FRIGERIO, ROBERTO
2025
Abstract
Extracellular nanoparticles (eNPs), including extracellular vesicles (EVs) and lipoproteins (LPs), play a crucial role in cell-to-cell communication and influence various physiological and pathological processes. Focusing on EVs, they hold particular promise in nanomedicine for diagnostics and therapeutics, representing a large biomarker space for liquid biopsies. However, overlapping of chemical-physical properties make it challenging a specific isolation, and accurate analysis of EVs. This PhD thesis aims to develop a highly sensitive method for analyzing single EV in real biofluids, with potential applications in clinical settings. The research addresses two major challenges in eNP analysis: detecting individual EV in complex biofluids and addressing EV surface marker variability. Additionally, interactions between different eNPs may lead to the formation of biologically relevant complexes. As part of this work, a preliminary investigation of EV-LP interactions was conducted using advanced, sensitive technologies. Chapter 2 presents a comparison between two highly sensitive digital platforms for immunophenotyping, which are crucial for addressing the complexity of real biofluids. Platforms based on SiMoA and SP-IRIS technologies were used to develop a protocol for evaluating EVs, and their performance was compared in terms of sensitivity and specificity. Chapter 3 introduces the Membrane Sensing Peptide (MSP), a pan-specific probe designed to address the heterogeneity of EV surface markers and enable unbiased EV analysis. Integrated into the SiMoA platform, MSP facilitates single EV analysis directly in real samples, demonstrating low affinity for LPs and high specificity for EVs. This method detects EVs independently of surface marker expression, as shown with Red Blood Cell-derived EVs (RBC-EVs). Clinically, this approach distinguished myocardial infarction patients from those with stable angina based on distinct EV-associated epitope signatures in serum and plasma, highlighting its diagnostic potential. Chapter 4 explores the applications of MSP, highlighting its versatility for both analytical and isolation purposes without introducing biases related to sub-population enrichment. During a six-month research period at ETH Zurich in Professor Arosio’s group, MSP was conjugated with a zwitterionic polymer coacervate to enable collective EV isolation and serve as a "one-pot assay" for EV biomarker analysis in complex fluids. 9 Chapter 5 describes a “bottom-up approach” using model systems (LDL, VLDL, and RBC-EVs) to investigate EV-LP interactions under physiological conditions. Advance immune-affinity technologies, including Super-Resolution Microscopy (SRM), Flow Cytometry (FACS), and Single Molecule Array (SiMoA), were employed to study these complexes in detail. In conclusion, this thesis introduces MSP as a novel pan-specific EV probe, offering a potential paradigm shift in the EV field. The results demonstrate MSP’s advantages in EV analysis and isolation, as well as its potential in clinical applications, paving the way for EV-based diagnostic assays. Additionally, a preliminary investigation into EV-LP interactions was conducted using high-sensitivity technologies.File | Dimensione | Formato | |
---|---|---|---|
Tesi Corretta Frigerio.pdf
accesso aperto
Dimensione
5.47 MB
Formato
Adobe PDF
|
5.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189866
URN:NBN:IT:UNIBS-189866