Background: Genome-wide epigenome-wide association studies (EWAS) are a novel approach compared to traditional genetic analyses (GWAS) to explore the epigenetic basis of complex diseases. Despite their potential, EWAS present several methodological challenges that limit their effectiveness and validity, necessitating the development of more robust analytical approaches. This thesis aims to critically examine these obstacles and develop an advanced analytical framework to improve the quality and reliability of EWAS results. Materials and Methods: This thesis introduces an advanced analysis framework that optimizes the classical workflow for handling DNA methylation data, including such crucial steps as data selection and import, quality control, preprocessing, and normalization. In addition, new methodologies are proposed to address the inherent limitations of EWAS studies, such as technical variability and the need to identify high-impact epigenetic modifications that are rarely shared among individuals. The framework also aims to facilitate better data sharing and integration, thereby increasing the reproducibility of studies. Results: The proposed framework was applied to three specific analysis studies, demonstrating its effectiveness in improving data quality and reproducibility of results. Through workflow optimization and the application of new methodologies, it was possible to significantly reduce sources of error and identify epigenetic variations of biological relevance that may not have been detected by traditional approaches. These results suggest that the proposed framework may offer a more comprehensive understanding of epigenetic changes associated with various diseases. Conclusions: The analysis framework developed in this thesis represents a significant advancement in the conduct of EWAS studies by offering practical strategies to improve the validity and reliability of the results. By implementing these strategies, the framework not only strengthens the design of future studies, but also contributes to the development of new diagnostic and therapeutic strategies based on epigenetics, fostering an integrated understanding of the interactions between genetics, epigenetics, and environmental
Background: Gli studi di associazione epigenomica a livello di genoma (EWAS) rappresentano un approccio innovativo rispetto alle tradizionali analisi genetiche (GWAS) per esplorare le basi epigenetiche delle malattie complesse. Nonostante il loro potenziale, gli EWAS presentano varie sfide metodologiche che ne limitano l'efficacia e la validità, rendendo necessario lo sviluppo di approcci analitici più robusti. Questa tesi si propone di esaminare criticamente questi ostacoli e di sviluppare un framework di analisi avanzato per migliorare la qualità e l'affidabilità dei risultati degli EWAS. Materiali e Metodi: La tesi introduce un framework di analisi avanzato che ottimizza il workflow classico per la gestione dei dati di metilazione del DNA, includendo fasi cruciali come la selezione e importazione dei dati, il controllo qualità, il preprocessamento e la normalizzazione. Inoltre, vengono proposte nuove metodologie per affrontare le limitazioni intrinseche degli studi EWAS, come la variabilità tecnica e la necessità di identificare modifiche epigenetiche di grande impatto, raramente condivise tra individui. Il framework mira anche a facilitare una migliore condivisione e integrazione dei dati, aumentando così la riproducibilità degli studi. Risultati: Il framework proposto è stato applicato a tre studi di analisi specifici, dimostrando la sua efficacia nel migliorare la qualità dei dati e la riproducibilità dei risultati. Attraverso l'ottimizzazione del workflow e l'applicazione di nuove metodologie, è stato possibile ridurre significativamente le fonti di errore e identificare variazioni epigenetiche di rilevanza biologica, che potrebbero non essere state rilevate con approcci tradizionali. Questi risultati suggeriscono che il framework proposto può offrire una comprensione più completa delle modifiche epigenetiche associate a diverse patologie. Conclusioni: Il framework di analisi sviluppato in questa tesi rappresenta un avanzamento significativo nella conduzione degli studi EWAS, offrendo strategie pratiche per migliorare la validità e l'affidabilità dei risultati. Implementando queste strategie, il framework non solo rafforza la progettazione di studi futuri, ma contribuisce anche allo sviluppo di nuove strategie diagnostiche e terapeutiche basate sull'epigenetica, favorendo una comprensione integrata delle interazioni tra genetica, epigenetica e ambiente
Framework di Analisi Avanzato per gli Studi EWAS: Superamento delle Sfide Metodologiche e Implementazione di Strategie Integrative
CAVAGNOLA, REBECCA
2025
Abstract
Background: Genome-wide epigenome-wide association studies (EWAS) are a novel approach compared to traditional genetic analyses (GWAS) to explore the epigenetic basis of complex diseases. Despite their potential, EWAS present several methodological challenges that limit their effectiveness and validity, necessitating the development of more robust analytical approaches. This thesis aims to critically examine these obstacles and develop an advanced analytical framework to improve the quality and reliability of EWAS results. Materials and Methods: This thesis introduces an advanced analysis framework that optimizes the classical workflow for handling DNA methylation data, including such crucial steps as data selection and import, quality control, preprocessing, and normalization. In addition, new methodologies are proposed to address the inherent limitations of EWAS studies, such as technical variability and the need to identify high-impact epigenetic modifications that are rarely shared among individuals. The framework also aims to facilitate better data sharing and integration, thereby increasing the reproducibility of studies. Results: The proposed framework was applied to three specific analysis studies, demonstrating its effectiveness in improving data quality and reproducibility of results. Through workflow optimization and the application of new methodologies, it was possible to significantly reduce sources of error and identify epigenetic variations of biological relevance that may not have been detected by traditional approaches. These results suggest that the proposed framework may offer a more comprehensive understanding of epigenetic changes associated with various diseases. Conclusions: The analysis framework developed in this thesis represents a significant advancement in the conduct of EWAS studies by offering practical strategies to improve the validity and reliability of the results. By implementing these strategies, the framework not only strengthens the design of future studies, but also contributes to the development of new diagnostic and therapeutic strategies based on epigenetics, fostering an integrated understanding of the interactions between genetics, epigenetics, and environmentalFile | Dimensione | Formato | |
---|---|---|---|
Tesi_Cavagnola_Rebecca.pdf
accesso aperto
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189926
URN:NBN:IT:UNIPV-189926