This thesis develops a computational framework to assess stochastic epigenetic mutations (SEMs), focusing on their identification, analysis, and validation across multiple datasets. The research addresses the challenge of accurately detecting SEMs: rare and random changes in epigenetic markers that can have significant biological implications. The framework integrates several analytical methods, including association analysis, enrichment analysis, and comparative studies, to validate the performance of identified markers. The thesis begins with a comprehensive overview of epigenetics, including its history, definitions, and biological significance. It then outlines the objectives and structure of the research, followed by the development of a software package, SEMseeker, designed to facilitate the analysis of SEMs. The package is validated using datasets related to Beckwith-Wiedeman Syndrome and age-related epigenetic changes, demonstrating its effectiveness in identifying and analyzing SEMs. Results from the analysis of Alzheimer's and osteoporosis datasets further validate the framework, showcasing its ability to detect SEMs associated with these conditions. The framework's performance is evaluated, and its applicability is demonstrated through case studies, including Vietnam War veteran dioxin exposure. The thesis concludes with a discussion of the limitations of the current approach and potential future improvements. The developed computational framework provides a robust tool for studying stochastic epigenetic mutations, contributing to the broader understanding of epigenetic variability and its impact on human health.

Questa tesi sviluppa un framework computazionale per valutare le mutazioni epigenetiche stocastiche (SEM), concentrandosi sulla loro identificazione, analisi e validazione attraverso diversi dataset. La ricerca affronta la sfida di rilevare con precisione le SEM: cambiamenti rari e casuali nei marcatori epigenetici che possono avere implicazioni biologiche significative. Il framework integra diversi metodi analitici, tra cui analisi di associazione, analisi di arricchimento e studi comparativi, per validare le prestazioni dei marcatori identificati. La tesi inizia con una panoramica completa sull’epigenetica, includendo la sua storia, le definizioni e il significato biologico. Successivamente, vengono delineati gli obiettivi e la struttura della ricerca, seguiti dallo sviluppo di un pacchetto software, SEMseeker, progettato per facilitare l’analisi delle SEM. Il pacchetto è validato utilizzando dataset relativi alla Sindrome di Beckwith-Wiedemann e ai cambiamenti epigenetici legati all’età, dimostrando la sua efficacia nell’identificare e analizzare le SEM. I risultati dell’analisi dei dataset relativi all’Alzheimer e all’osteoporosi validano ulteriormente il framework, evidenziandone la capacità di rilevare SEM associate a queste condizioni. Le prestazioni del framework vengono valutate e la sua applicabilità dimostrata attraverso studi di caso, tra cui l’esposizione alla diossina dei veterani della guerra del Vietnam. La tesi si conclude con una discussione sui limiti dell’approccio attuale e sui possibili miglioramenti futuri. Il framework computazionale sviluppato fornisce uno strumento solido per lo studio delle mutazioni epigenetiche stocastiche, contribuendo a una comprensione più ampia della variabilità epigenetica e del suo impatto sulla salute umana.

SEMSeeker: Un pacchetto R per condurre studi di associazione epigenetici basati su epimutazione stocastica

CORSARO, LUIGI
2025

Abstract

This thesis develops a computational framework to assess stochastic epigenetic mutations (SEMs), focusing on their identification, analysis, and validation across multiple datasets. The research addresses the challenge of accurately detecting SEMs: rare and random changes in epigenetic markers that can have significant biological implications. The framework integrates several analytical methods, including association analysis, enrichment analysis, and comparative studies, to validate the performance of identified markers. The thesis begins with a comprehensive overview of epigenetics, including its history, definitions, and biological significance. It then outlines the objectives and structure of the research, followed by the development of a software package, SEMseeker, designed to facilitate the analysis of SEMs. The package is validated using datasets related to Beckwith-Wiedeman Syndrome and age-related epigenetic changes, demonstrating its effectiveness in identifying and analyzing SEMs. Results from the analysis of Alzheimer's and osteoporosis datasets further validate the framework, showcasing its ability to detect SEMs associated with these conditions. The framework's performance is evaluated, and its applicability is demonstrated through case studies, including Vietnam War veteran dioxin exposure. The thesis concludes with a discussion of the limitations of the current approach and potential future improvements. The developed computational framework provides a robust tool for studying stochastic epigenetic mutations, contributing to the broader understanding of epigenetic variability and its impact on human health.
6-feb-2025
Italiano
Questa tesi sviluppa un framework computazionale per valutare le mutazioni epigenetiche stocastiche (SEM), concentrandosi sulla loro identificazione, analisi e validazione attraverso diversi dataset. La ricerca affronta la sfida di rilevare con precisione le SEM: cambiamenti rari e casuali nei marcatori epigenetici che possono avere implicazioni biologiche significative. Il framework integra diversi metodi analitici, tra cui analisi di associazione, analisi di arricchimento e studi comparativi, per validare le prestazioni dei marcatori identificati. La tesi inizia con una panoramica completa sull’epigenetica, includendo la sua storia, le definizioni e il significato biologico. Successivamente, vengono delineati gli obiettivi e la struttura della ricerca, seguiti dallo sviluppo di un pacchetto software, SEMseeker, progettato per facilitare l’analisi delle SEM. Il pacchetto è validato utilizzando dataset relativi alla Sindrome di Beckwith-Wiedemann e ai cambiamenti epigenetici legati all’età, dimostrando la sua efficacia nell’identificare e analizzare le SEM. I risultati dell’analisi dei dataset relativi all’Alzheimer e all’osteoporosi validano ulteriormente il framework, evidenziandone la capacità di rilevare SEM associate a queste condizioni. Le prestazioni del framework vengono valutate e la sua applicabilità dimostrata attraverso studi di caso, tra cui l’esposizione alla diossina dei veterani della guerra del Vietnam. La tesi si conclude con una discussione sui limiti dell’approccio attuale e sui possibili miglioramenti futuri. Il framework computazionale sviluppato fornisce uno strumento solido per lo studio delle mutazioni epigenetiche stocastiche, contribuendo a una comprensione più ampia della variabilità epigenetica e del suo impatto sulla salute umana.
CAVALLINI, ELENA
Università degli studi di Pavia
File in questo prodotto:
File Dimensione Formato  
phd_thesis_luigi_corsaro_english.pdf

accesso aperto

Dimensione 22.36 MB
Formato Adobe PDF
22.36 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/189932
Il codice NBN di questa tesi è URN:NBN:IT:UNIPV-189932