This dissertation explores the connections between toroidal groups, generalized Jacobians, and non-totally real number fields, consolidating results from articles and preprints with unpublished material. After presenting the foundational theory of toroidal groups, their construction from number fields, and the essential properties of Jacobians and hyperelliptic functions in Chapter 1, the work delves into the isomorphisms between quasi-Abelian varieties and generalized Jacobians of elliptic and hyperelliptic curves, employing meromorphic periodic functions (Chapter 2). Chapter 3 investigates the relationship between toroidal groups and non-totally real number fields, starting with cubic fields and extending to any dimension. The quintic case has been also studied in relations with toroidal groups of complex rank three and real rank five. The main results of this chapter include proving that certain toroidal groups with specific ranks correspond to non-totally real number fields via their endomorphism rings. Additionally, the $m$-torsion subgroups of toroidal groups are parametrized in the geometric correspondence with generalized Jacobians. These results deepen our understanding of algebraic and geometric structures tied to number fields and periodic functions.

Questa tesi esplora le connessioni tra gruppi toroidali, Jacobiane generalizzate e campi numerici non totalmente reali, consolidando risultati tratti da articoli e preprint con materiale inedito. Dopo aver presentato la teoria di base dei gruppi toroidali, la loro costruzione a partire da campi numerici e le proprietà essenziali delle Jacobiane e delle funzioni iperellittiche nel Capitolo 1, il lavoro approfondisce gli isomorfismi tra varietà quasi-Abeliane e Jacobiane generalizzate di curve ellittiche e iperellittiche, impiegando funzioni meromorfe periodiche (Capitolo 2). Il Capitolo 3 indaga il rapporto tra gruppi toroidali e campi numerici non totalmente reali, partendo dai campi cubici ed estendendo l’analisi a qualsiasi dimensione. Il caso quintico è stato inoltre studiato in relazione ai gruppi toroidali di rango complesso tre e rango reale cinque. I principali risultati di questo capitolo includono la dimostrazione che alcuni gruppi toroidali con ranghi specifici corrispondono a campi numerici non totalmente reali tramite i loro anelli di endomorfismi. Inoltre, i sottogruppi di $m$-torsione dei gruppi toroidali sono parametrizzati nella corrispondenza geometrica con le Jacobiane generalizzate. Questi risultati approfondiscono la comprensione delle strutture algebriche e geometriche legate ai campi numerici e alle funzioni periodiche.

On Toroidal groups in relationship with generalized Jacobians, and non-totally real number fields

Dioguardi Burgio, Alessandro
2025

Abstract

This dissertation explores the connections between toroidal groups, generalized Jacobians, and non-totally real number fields, consolidating results from articles and preprints with unpublished material. After presenting the foundational theory of toroidal groups, their construction from number fields, and the essential properties of Jacobians and hyperelliptic functions in Chapter 1, the work delves into the isomorphisms between quasi-Abelian varieties and generalized Jacobians of elliptic and hyperelliptic curves, employing meromorphic periodic functions (Chapter 2). Chapter 3 investigates the relationship between toroidal groups and non-totally real number fields, starting with cubic fields and extending to any dimension. The quintic case has been also studied in relations with toroidal groups of complex rank three and real rank five. The main results of this chapter include proving that certain toroidal groups with specific ranks correspond to non-totally real number fields via their endomorphism rings. Additionally, the $m$-torsion subgroups of toroidal groups are parametrized in the geometric correspondence with generalized Jacobians. These results deepen our understanding of algebraic and geometric structures tied to number fields and periodic functions.
26-feb-2025
Inglese
Questa tesi esplora le connessioni tra gruppi toroidali, Jacobiane generalizzate e campi numerici non totalmente reali, consolidando risultati tratti da articoli e preprint con materiale inedito. Dopo aver presentato la teoria di base dei gruppi toroidali, la loro costruzione a partire da campi numerici e le proprietà essenziali delle Jacobiane e delle funzioni iperellittiche nel Capitolo 1, il lavoro approfondisce gli isomorfismi tra varietà quasi-Abeliane e Jacobiane generalizzate di curve ellittiche e iperellittiche, impiegando funzioni meromorfe periodiche (Capitolo 2). Il Capitolo 3 indaga il rapporto tra gruppi toroidali e campi numerici non totalmente reali, partendo dai campi cubici ed estendendo l’analisi a qualsiasi dimensione. Il caso quintico è stato inoltre studiato in relazione ai gruppi toroidali di rango complesso tre e rango reale cinque. I principali risultati di questo capitolo includono la dimostrazione che alcuni gruppi toroidali con ranghi specifici corrispondono a campi numerici non totalmente reali tramite i loro anelli di endomorfismi. Inoltre, i sottogruppi di $m$-torsione dei gruppi toroidali sono parametrizzati nella corrispondenza geometrica con le Jacobiane generalizzate. Questi risultati approfondiscono la comprensione delle strutture algebriche e geometriche legate ai campi numerici e alle funzioni periodiche.
FALCONE, Giovanni
LOMBARDO, Maria Carmela
Università degli Studi di Palermo
Palermo
File in questo prodotto:
File Dimensione Formato  
Tesi_DioguardiBurgio10022025_firmata.pdf

accesso aperto

Dimensione 990.12 kB
Formato Adobe PDF
990.12 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/190147
Il codice NBN di questa tesi è URN:NBN:IT:UNIPA-190147