In this thesis we present a joint work with F. Andreatta and A. Iovita about a BGG decomposition of the de Rham sheaves W_\kappa defined over the modular elliptic curves. In Chapter 1 we study the infinitesimal site of smooth rigid analytic varieties and we define the linearization and delinearization functors. In Chapter 2 we introduce the BGG decomposition for some infinite dimensional g−modules, where g is a semisimple Lie algebra. Thanks to this decomposition we compute the de Rham cohomology of the sheaves W_\kappa. The techniques presented could be used in order to study infinite dimensional g−modules over more general Shimura varieties.

BGG Decomposition for de Rham Sheaves on the Modular Elliptic Curve

BARACCHINI, MARCO
2025

Abstract

In this thesis we present a joint work with F. Andreatta and A. Iovita about a BGG decomposition of the de Rham sheaves W_\kappa defined over the modular elliptic curves. In Chapter 1 we study the infinitesimal site of smooth rigid analytic varieties and we define the linearization and delinearization functors. In Chapter 2 we introduce the BGG decomposition for some infinite dimensional g−modules, where g is a semisimple Lie algebra. Thanks to this decomposition we compute the de Rham cohomology of the sheaves W_\kappa. The techniques presented could be used in order to study infinite dimensional g−modules over more general Shimura varieties.
28-gen-2025
Inglese
IOVITA, ADRIAN
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
MarcoBaracchiniPhDThesis.pdf

accesso aperto

Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/190187
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-190187