This thesis examines the convergence of materials science, electronics and biology through the development of bioelectronic platforms based on organic electrochemical transistors (OECTs). By fostering interdisciplinary research, it aims to develop innovative devices that advance biomedical engineering and significantly enhance the effectiveness and accessibility of e-healthcare solutions. Among the benefits of OECTs are their low operating voltages, stability in aqueous environments, scalability for integration into large-scale electronic systems and ease of processing and fabrication. Operating as three-terminal devices, OECTs channel conductivity is modulated by driving ions in and out of the channel, which is gated by voltage changes at the volumetric interface between the electrolyte and the conducting polymer film. By mimicking the ion transport processes inherent in biological systems, OECTs can seamlessly integrate with living tissues and physiological environments detecting and amplifying ion fluxes into measurable electrical signals. Chapter 1 details highlighting their unique properties and capabilities that align with the goals of developing advanced bioelectronic platforms for biomedical applications. Chapter 1 highlights the OECTs properties that support the development of advanced bioelectronic platforms for biomedical applications. Chapter 2 introduces a scalable photolithographic fabrication process for high-performance OECTs using the prototypical conductive polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS). The method employs a two-layer photoresist approach with controlled cross-linking to pattern the polymeric channel and encapsulate the electrodes. This work explores alternative polarizable gate materials to mitigate cytotoxicity while enhancing device performance, achieving unprecedented ion detection sensitivity at low supply voltages. These advancements open opportunities for next-generation integrated bioelectronics, and neuromorphics. The results are reported in the paper “Microfabrication of Organic Electrochemical Transistors for High-Performance Integrated Bioelectronics” to be submitted to peer-review on Advanced Materials Technologies. Chapter 3 focuses on advancing ion-selective sensing with the introduction of ion-selective floating-gate OECTs (ISFG-OECTs) architecture. With the aim of overcoming the complexity and bulk of traditional ion-selective sensing devices, the novel architecture paradigm achieves efficient ionic-electronic coupling within a compact design, enabling selective ion detection without liquid reservoirs. Theoretical and practical guidelines for ISFG-OECT implementation are provided. This chapter highlights the ISFG-OECT’s potential as a scalable and reliable solution for ion monitoring in fields such as medical diagnostics, precision agriculture, and environmental sensing. This chapter’s findings are published on Advanced Materials Technologies. In Chapter 4, the objective is to develop fully 3D-printed vertical OECTs (vOECTs). This chapter explores a direct-write additive 3D printing approach that optimizes device structure and integrates ion-selective membranes to yield high-performance, miniaturized devices. It demonstrates their potential for integration in biomedical applications that require high sensitivity and selectivity. Chapter 5 outlines the development of a high-throughput bioelectronic platform for extracellular vesicle (EV) quantification. The system integrates channel-functionalized OECT arrays in a 3×4 matrix configuration, using click chemistry to detect EVs with transmembrane proteins, allowing real-time quantification. This configuration represents a robust, high-sensitivity, and user-friendly solution for precision healthcare, EV research, and screening diagnostics, addressing the challenges of heterogeneity and the need for reliable biomarker quantification in biomedical applications.
La ricerca oggetto approfondisce la convergenza tra scienza dei materiali, elettronica e biologia attraverso lo sviluppo di piattaforme bioelettroniche basate su transistor elettrochimici organici (OECT). Adottando un approccio interdisciplinare, l’obiettivo è realizzare dispositivi innovativi che avanzino l’ingegneria biomedica, migliorando l’efficacia e l’accessibilità delle soluzioni di e-healthcare. Tra i vantaggi degli OECT vi sono basse tensioni di funzionamento, stabilità in ambienti acquosi, scalabilità per l'integrazione in sistemi elettronici su larga scala e facilità di fabbricazione. Operando come dispositivi a tre terminali, la conduttività del canale è modulata dal movimento di ioni attraverso il canale, guidato da cambiamenti di tensione all'interfaccia volumetrica tra l'elettrolita e il polimero conduttivo. Imitando i processi di trasporto ionico propri dei sistemi biologici, gli OECT si integrano perfettamente con i tessuti corporei e ambienti fisiologici, rilevando e amplificando i flussi ionici in segnali elettrici misurabili. Il Capitolo 1 fornisce una panoramica sugli OECT, evidenziando come questa tecnologia si allinei con lo sviluppo di piattaforme bioelettroniche per applicazioni biomediche. Il Capitolo 2 introduce un processo fotolitografico scalabile per la produzione di OECT ad alte prestazioni, utilizzando il polimero conduttivo poli(3,4-etilenediossitiophene) drogato con poli(stirene sulfonato) (PEDOT:PSS). Il metodo sfrutta una tecnica basata sulla deposizione di due strati di fotoresist con cross-linking controllato per definire le geometrie del canale e incapsulare gli elettrodi. Inoltre, al fine di ridurre la citotossicità e migliorare le prestazioni dei dispositivi, questo capitolo analizza l’uso di materiali alternativi per il gate polarizzabile, migliorando la sensibilità nella rilevazione degli ioni a basse tensioni di alimentazione. Questi sviluppi delineano una trasformazione nella bioelettronica integrata e nei sistemi neuromorfici. I risultati sono pubblicati nell'articolo "Microfabrication of Organic Electrochemical Transistors for High-Performance Integrated Bioelectronics" su Advanced Materials Technologies. Il Capitolo 3 introduce l’architettura ion-selective floating-gate OECT (ISFG-OECT), per eliminare la complessità e l’ingombro dei dispositivi tradizionali per il rilevamento ionico selettivo. Il nuovo design consente un accoppiamento ionico-elettronico efficiente, permettendo il rilevamento selettivo degli ioni senza l’impiego di serbatoi di liquidi. Questo capitolo evidenzia il potenziale degli ISFG-OECT come soluzione scalabile e affidabile per il monitoraggio degli ioni in settori come la diagnostica medica, l'agricoltura di precisione e il monitoraggio ambientale. I risultati sono stati pubblicati su Advanced Materials Technologies. Nel Capitolo 4, l’obiettivo è sviluppare OECT ad architettura verticale totalmente stampati in 3D (vOECT). Questo capitolo esplora un approccio di stampa 3D additiva che ottimizza la struttura del dispositivo e integra membrane ionoselettive, al fine di realizzare dispositivi miniaturizzati ad alte prestazioni. Viene dimostrato il loro potenziale per l'integrazione in applicazioni biomediche che richiedono alta sensibilità e selettività. Il Capitolo 5 presenta la realizzazione di una piattaforma bioelettronica ad alta efficienza e sensibilità per la quantificazione di vescicole extracellulari (EV). Il sistema integra matrici di OECT funzionalizzati in configurazione 3×4, utilizzando la click-chemistry per rilevare le EV con proteine di membrana, consentendo la quantificazione in tempo reale. Questa configurazione rappresenta una soluzione robusta, ad alta sensibilità e facile da usare per la sanità di precisione, la ricerca sulle EV e l’indagine diagnostica, affrontando le sfide della eterogeneità e la necessità di una quantificazione affidabile dei biomarcatori nelle applicazioni biomediche
Advanced Bioelectronic Platforms for Biomedical Engineering and E-Healthcare
FRUSCONI, GIULIA
2025
Abstract
This thesis examines the convergence of materials science, electronics and biology through the development of bioelectronic platforms based on organic electrochemical transistors (OECTs). By fostering interdisciplinary research, it aims to develop innovative devices that advance biomedical engineering and significantly enhance the effectiveness and accessibility of e-healthcare solutions. Among the benefits of OECTs are their low operating voltages, stability in aqueous environments, scalability for integration into large-scale electronic systems and ease of processing and fabrication. Operating as three-terminal devices, OECTs channel conductivity is modulated by driving ions in and out of the channel, which is gated by voltage changes at the volumetric interface between the electrolyte and the conducting polymer film. By mimicking the ion transport processes inherent in biological systems, OECTs can seamlessly integrate with living tissues and physiological environments detecting and amplifying ion fluxes into measurable electrical signals. Chapter 1 details highlighting their unique properties and capabilities that align with the goals of developing advanced bioelectronic platforms for biomedical applications. Chapter 1 highlights the OECTs properties that support the development of advanced bioelectronic platforms for biomedical applications. Chapter 2 introduces a scalable photolithographic fabrication process for high-performance OECTs using the prototypical conductive polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS). The method employs a two-layer photoresist approach with controlled cross-linking to pattern the polymeric channel and encapsulate the electrodes. This work explores alternative polarizable gate materials to mitigate cytotoxicity while enhancing device performance, achieving unprecedented ion detection sensitivity at low supply voltages. These advancements open opportunities for next-generation integrated bioelectronics, and neuromorphics. The results are reported in the paper “Microfabrication of Organic Electrochemical Transistors for High-Performance Integrated Bioelectronics” to be submitted to peer-review on Advanced Materials Technologies. Chapter 3 focuses on advancing ion-selective sensing with the introduction of ion-selective floating-gate OECTs (ISFG-OECTs) architecture. With the aim of overcoming the complexity and bulk of traditional ion-selective sensing devices, the novel architecture paradigm achieves efficient ionic-electronic coupling within a compact design, enabling selective ion detection without liquid reservoirs. Theoretical and practical guidelines for ISFG-OECT implementation are provided. This chapter highlights the ISFG-OECT’s potential as a scalable and reliable solution for ion monitoring in fields such as medical diagnostics, precision agriculture, and environmental sensing. This chapter’s findings are published on Advanced Materials Technologies. In Chapter 4, the objective is to develop fully 3D-printed vertical OECTs (vOECTs). This chapter explores a direct-write additive 3D printing approach that optimizes device structure and integrates ion-selective membranes to yield high-performance, miniaturized devices. It demonstrates their potential for integration in biomedical applications that require high sensitivity and selectivity. Chapter 5 outlines the development of a high-throughput bioelectronic platform for extracellular vesicle (EV) quantification. The system integrates channel-functionalized OECT arrays in a 3×4 matrix configuration, using click chemistry to detect EVs with transmembrane proteins, allowing real-time quantification. This configuration represents a robust, high-sensitivity, and user-friendly solution for precision healthcare, EV research, and screening diagnostics, addressing the challenges of heterogeneity and the need for reliable biomarker quantification in biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
TesiFrusconicorretta.pdf
embargo fino al 06/02/2027
Dimensione
17.9 MB
Formato
Adobe PDF
|
17.9 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/190191
URN:NBN:IT:UNIBS-190191