Lung cancer is the leading cause of cancer-related deaths worldwide, primarily classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for approximately 85% of lung cancer cases, with many diagnosed at advanced stages after metastasis. Chemotherapy remains the main treatment for NSCLC, though its effectiveness is limited. Immune checkpoint inhibitors can boost antitumor immunity in some patients, but there is an urgent need for novel therapeutic approaches to overcome chemoresistance and target non-responding patient groups. The tumor microenvironment (TME), composed of stromal elements and immune cells, plays a crucial role in cancer progression. Plasmacytoid dendritic cells (pDCs), which infiltrate NSCLC, are often inactive within the TME, contributing to immunosuppression. When activated by TLR7 and TLR9, pDCs produce type I interferons (IFNs), key in driving immune responses and enhancing NK cell cytotoxicity. NK cells are associated with better outcomes in lung cancer but show reduced tumor-killing capacity in NSCLC. Restoring the anticancer function of the pDC/NK cell axis presents a promising strategy. MicroRNAs (miRNAs), small RNAs that regulate gene expression, are often dysregulated in cancer, making them promising therapeutic targets. Two strategies have emerged: using antagomiRs to block oncomiRs and restoring tumor-suppressing miRNAs. miRNA-based therapies offer a targeted approach to modulate gene expression and fight cancer at the molecular level. Our lab recently demonstrated a novel role of extracellular miRNAs as ligands for TLR7 and TLR8, potentially rescuing immune activation in the TME. In NSCLC, the downregulation of miR203a correlates with poor prognosis, and its replenishment inhibits tumor growth through SRC regulation. This thesis investigates whether miR203a can act as a therapeutic tool against NSCLC through a combined effect. We hypothesized that miR203a replenishment could reduce cancer growth through post-transcriptional regulation and TLR7/8 stimulation, restoring pDC/NK crosstalk and immune activation. Furthermore, miR203a could be combined with chemotherapy to reduce chemoresistance and adverse side effects. Our results showed that miR203a induced TLR7-dependent IFN-α secretion by pDCs, fully activating NK cells and leading to the killing of NSCLC cells. miR203a administration blocked cell proliferation and clonogenic ability in NSCLC cell lines. A scramble sequence of miR203a showed no inhibitory effect, confirming that the tumor-blocking effect is due to post-transcriptional regulation. A combined therapy of miR203a and cisplatin significantly reduced cell viability in A549 and H460 lines. Future experiments will investigate miR203a’s therapeutic potential in vivo in murine models. In addition to the primary project, two side projects were conducted in collaboration with the Oncology Unit at Spedali Civili of Brescia: the IDENTIFY study on head and neck squamous cell carcinoma patients undergoing radiotherapy, and the Immune-All study on patients with various cancers treated with immune checkpoint inhibitors. Our lab’s role was to assess immune populations in circulating blood using flow cytometry. The IDENTIFY study revealed significant immune changes after radiotherapy, including a reduction in CD4+ T cells and increases in pDCs and regulatory T cells (Treg). Interestingly, NK cells were reduced, and monocytic MDSCs increased, suggesting variability in immune responses to radiotherapy. In the Immune-All study, higher pDC levels correlated with better treatment outcomes and longer progression-free survival (PFS), suggesting that pDC levels and immune-related adverse events (irAEs) could serve as prognostic markers for improved immunotherapy outcomes.
Il cancro ai polmoni è la principale causa di morte per tumore a livello mondiale, classificato in NSCLC e SCLC. Il NSCLC rappresenta circa l'85% dei casi, con molti diagnosticati in stadi avanzati. La chemioterapia è il trattamento principale, ma la sua efficacia è limitata. Gli inibitori dei checkpoint immunitari stimolano l'immunità antitumorale in alcuni pazienti, ma c'è bisogno di nuove strategie terapeutiche per superare la chemoresistenza e mirare ai gruppi di pazienti non rispondenti. Il microambiente tumorale (TME) gioca un ruolo cruciale nella progressione del cancro. Le pDC, che infiltrano il NSCLC, sono spesso inattive nel TME, contribuendo all'immunosoppressione. Quando attivate dai TLR7 e TLR9, le pDC producono IFN di tipo I, cruciali per le risposte immunitarie e per la citotossicità delle cellule NK. Le cellule NK, associate a una migliore prognosi, mostrano una ridotta capacità antitumorale nel NSCLC. Ripristinare la funzione antitumorale dell'asse pDC/NK potrebbe rappresentare una strategia promettente. I microRNA (miRNA), che regolano l'espressione genica, sono frequentemente deregolati nel cancro, rendendoli target terapeutici promettenti. Due strategie terapeutiche principali sono l’uso di antagomiR per bloccare gli oncomiR e il ripristino dei miRNA tumor-soppressori. Il nostro laboratorio ha recentemente dimostrato un nuovo ruolo dei miRNA extracellulari come ligandi per TLR7 e TLR8, potenzialmente ripristinando l'attivazione immunitaria nel TME. Nel NSCLC, la riduzione del miR203a è correlata a una prognosi sfavorevole, mentre il suo ripristino riduce la crescita tumorale, regolando SRC. Questa tesi esplora se il miR203a possa agire come strumento terapeutico contro il NSCLC tramite un effetto combinato. Abbiamo ipotizzato che il ripristino del miR203a possa ridurre la crescita tumorale tramite la regolazione post-trascrizionale e la stimolazione di TLR7/8, ripristinando l'asse pDC/NK e l’attivazione immunitaria. Inoltre, il miR203a potrebbe essere combinato con la chemioterapia per ridurre la chemoresistenza e gli effetti collaterali. I risultati mostrano che il miR203a induce una secrezione di IFN-α dipendente da TLR7 dalle pDC, attivando completamente le cellule NK e provocando l’uccisione delle cellule tumorali NSCLC. Il trattamento con miR203a ha bloccato la proliferazione e la clonogenesi nelle linee cellulari di NSCLC. Una sequenza scramble di miR203a non ha avuto effetti, confermando che l’effetto inibitorio è dovuto alla regolazione post-trascrizionale. La combinazione di miR203a e cisplatino ha ridotto significativamente la vitalità cellulare nelle linee A549 e H460. Esperimenti futuri indagheranno il potenziale terapeutico in vivo del miR203a. Inoltre, sono stati condotti due progetti collaterali in collaborazione con l'Oncologia degli Spedali Civili di Brescia: lo studio IDENTIFY sui pazienti con carcinoma squamocellulare della testa e del collo sottoposti a radioterapia e lo studio Immune-All su pazienti trattati con inibitori dei checkpoint immunitari. Il nostro ruolo è stato valutare le popolazioni immunitarie circolanti tramite citometria a flusso. Lo studio IDENTIFY ha rivelato cambiamenti immunitari significativi dopo la radioterapia, tra cui una riduzione delle cellule CD4+ e un aumento di pDC e Treg. Le cellule NK erano ridotte, mentre aumentavano le M-MDSC, suggerendo variabilità nelle risposte immunitarie. Nel progetto Immune-All, livelli più elevati di pDC sembrano correlare con migliori risultati terapeutici e maggiore PFS, suggerendo che i livelli di pDC e gli irAEs possano servire come marker prognostici per una migliore stratificazione dei pazienti e migliori risultati dell’immunoterapia.
Dissecting a dual tumor-suppressive role of miR203a in NSCLC: TLR activator and post-transcriptional regulator
VAHIDI, YASMIN
2025
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, primarily classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for approximately 85% of lung cancer cases, with many diagnosed at advanced stages after metastasis. Chemotherapy remains the main treatment for NSCLC, though its effectiveness is limited. Immune checkpoint inhibitors can boost antitumor immunity in some patients, but there is an urgent need for novel therapeutic approaches to overcome chemoresistance and target non-responding patient groups. The tumor microenvironment (TME), composed of stromal elements and immune cells, plays a crucial role in cancer progression. Plasmacytoid dendritic cells (pDCs), which infiltrate NSCLC, are often inactive within the TME, contributing to immunosuppression. When activated by TLR7 and TLR9, pDCs produce type I interferons (IFNs), key in driving immune responses and enhancing NK cell cytotoxicity. NK cells are associated with better outcomes in lung cancer but show reduced tumor-killing capacity in NSCLC. Restoring the anticancer function of the pDC/NK cell axis presents a promising strategy. MicroRNAs (miRNAs), small RNAs that regulate gene expression, are often dysregulated in cancer, making them promising therapeutic targets. Two strategies have emerged: using antagomiRs to block oncomiRs and restoring tumor-suppressing miRNAs. miRNA-based therapies offer a targeted approach to modulate gene expression and fight cancer at the molecular level. Our lab recently demonstrated a novel role of extracellular miRNAs as ligands for TLR7 and TLR8, potentially rescuing immune activation in the TME. In NSCLC, the downregulation of miR203a correlates with poor prognosis, and its replenishment inhibits tumor growth through SRC regulation. This thesis investigates whether miR203a can act as a therapeutic tool against NSCLC through a combined effect. We hypothesized that miR203a replenishment could reduce cancer growth through post-transcriptional regulation and TLR7/8 stimulation, restoring pDC/NK crosstalk and immune activation. Furthermore, miR203a could be combined with chemotherapy to reduce chemoresistance and adverse side effects. Our results showed that miR203a induced TLR7-dependent IFN-α secretion by pDCs, fully activating NK cells and leading to the killing of NSCLC cells. miR203a administration blocked cell proliferation and clonogenic ability in NSCLC cell lines. A scramble sequence of miR203a showed no inhibitory effect, confirming that the tumor-blocking effect is due to post-transcriptional regulation. A combined therapy of miR203a and cisplatin significantly reduced cell viability in A549 and H460 lines. Future experiments will investigate miR203a’s therapeutic potential in vivo in murine models. In addition to the primary project, two side projects were conducted in collaboration with the Oncology Unit at Spedali Civili of Brescia: the IDENTIFY study on head and neck squamous cell carcinoma patients undergoing radiotherapy, and the Immune-All study on patients with various cancers treated with immune checkpoint inhibitors. Our lab’s role was to assess immune populations in circulating blood using flow cytometry. The IDENTIFY study revealed significant immune changes after radiotherapy, including a reduction in CD4+ T cells and increases in pDCs and regulatory T cells (Treg). Interestingly, NK cells were reduced, and monocytic MDSCs increased, suggesting variability in immune responses to radiotherapy. In the Immune-All study, higher pDC levels correlated with better treatment outcomes and longer progression-free survival (PFS), suggesting that pDC levels and immune-related adverse events (irAEs) could serve as prognostic markers for improved immunotherapy outcomes.File | Dimensione | Formato | |
---|---|---|---|
Final PhD Thesis_Yasmin Vahidi.pdf
embargo fino al 28/01/2027
Dimensione
5.74 MB
Formato
Adobe PDF
|
5.74 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/190193
URN:NBN:IT:UNIBS-190193