Glioblastoma (GBM) is the most frequent primary brain tumour in adults. We studied a rare, aggressive histological subtype: “Glioblastoma with Primitive Neuronal Component” (GBM-PNC). According to WHO (2016), this variant is a mixed glial component (the GBM part) with nodules of immature cells displaying early neuronal differentiation (the PNC part). Alterations in the Retinoblastoma-associated protein 1 (RB1) pathway, with inactivation of RB1 tumour suppressor, have been recently defined as the hallmark of GBM-PNCs. Our data (paper under review) showed that, along with RB1 pathway disruption, p53 pathway alteration are a consistent feature of GBM-PNC tumours. We identified EBF3 transcription factor as a PNC marker promoting an early neuronal phenotype. To better elucidate our findings, we set up an in vitro system to study the effects of RB1 and p53 pathways alteration in patient-derived glioma stem cells (GSCs) in driving the GBM-PNC development. Subpopulations of GSCs are the cause of GBM heterogeneity, tumour relapse and drug resistance, so they are a suitable model for a translational perspective. We created a CRISPR/Cas9 RB1 knockout model, with either loss or retention of p53 functionality, and we transduced an RB1-negative EBF3-positive GBM-PNC GSCs line to test if the ectopic RB1 expression could revert it into a conventional GBM. We characterised all clones by the recovery of the transcriptional levels of E2Fs, downstream RB1 in the control of cell cycle progression, as well as of MYCN/cMYC. We performed functional assays on neurospheres and 3D GSC-derived organoids model, that can recapitulate the features of the tumours. Our data show that the loss of RB1 does not mediate aberrant proliferation and apoptosis activation, with or without p53. The concomitant mutation TP53-RB1 does not influence the invasiveness, but RB1 knockout in a TP53 wildtype context impairs the invasive capacity of the spheroids. Both the cell cycle and the cytogenetic analysis highlighted an increased ploidy in the double-mutants as compared to the mocks and the transcriptomic data confirmed the upregulation of cell cycle phase transition pathways and of mitotic spindle assembly checkpoints. The immunopathological stainings of GSC-derived organoids showed that the double-mutants markedly reduced the expression of GFAP glial marker, while maintaining a neuroectodermal signature (Nestin, Vimentin, SOX2, CD133), and they presented multinucleated cells with hyperchromatic nuclei, mirroring the aberrant mitotic features of the PNC component of tumours. Surprisingly, we did not observe a EBF3 positivity in the double-mutants GSCs, nor in their organoids. We assessed that the EBF3 promoter was methylated, suggesting an epigenetic status that might prevent the gain of a full biphasic phenotype. The failed ectopic expression of RB1 in the GBM-PNC GSCs might reinforce this hypothesis. Finally, upon irradiation (preliminary data), double-mutants were more sensitive to DNA damages. Given the GBM-PNC refractoriness to the conventional GBM therapeutic protocol (radio-chemotherapy), we should further investigate this translational approach. All together, these findings confirm that the combination of cell cycle control disruption via RB1 loss and the p53-dependent apoptosis abolishment could be the predisposing features toward the GBM-PNC development, although this molecular setting is not enough to switch a conventional GBM into the biphasic phenotype.
Il glioblastoma è il tumore cerebrale primario più frequente negli adulti. Abbiamo studiato un sottotipo istologico raro e aggressivo: “Glioblastoma con Componente Primitiva Neuronale” (GBM-PNC). Secondo la OMS (2016), questa variante è una componente gliale mista (la parte GBM) con noduli di cellule immature a differenziazione neuronale precoce (la parte PNC). L’alterazione del pathway di “proteina 1 associata al retinoblastoma” (RB1), con inattivazione dell’oncosoppressore RB1, è stata di recente identificata come peculiarità dei GBM-PNC. I nostri dati (articolo in revisione) hanno dimostrato che, l’alterazione sia di RB1 che di p53 accomuna i tumori GBM-PNC. Abbiamo identificato il fattore di trascrizione EBF3 come marcatore di PNC e promotore del fenotipo neuronale precoce. Abbiamo generato un sistema in vitro per studiare gli effetti dell’alterazione di RB1 e p53 nelle cellule staminali di glioma (GSC) derivate da pazienti. Le sottopopolazioni di GSC sono la causa dell’eterogeneità dei GBM, delle recidive e della resistenza ai farmaci, quindi sono adatte per un approccio traslazionale. Abbiamo creato un modello CRISPR/Cas9 RB1 knockout con perdita o mantenimento della funzionalità di p53 e abbiamo trasdotto una linea di GBM-PNC, RB1 negativa e EBF3 positiva, per verificare se l’espressione ectopica di RB1 potesse farla regredire a un GBM convenzionale. In tutti i cloni è stato verificato il recupero dei livelli trascrizionali degli E2F, a valle di RB1 nel controllo della progressione del ciclo cellulare, nonché di MYCN/cMYC. Abbiamo eseguito saggi funzionali su neurosfere e organoidi derivanti da GSC, modello 3D capace di ricapitolare il fenotipo dei tumori dei pazienti. I nostri dati dimostrano che la perdita di RB1, non causa una proliferazione aberrante né l’attivazione di apoptosi, con o senza p53. La concomitante mutazione RB1-TP53 non influenza l’invasività, ma il knockout di RB1 con TP53 non mutato compromette la capacità invasiva degli sferoidi. L’analisi citogenetica e del ciclo cellulare hanno evidenziato un aumento di ploidia nei doppi mutanti rispetto ai cloni controllo e l’analisi trascrittomica ha confermato l’upregolazione dei pathway di transizione tra fasi del ciclo cellulare e del controllo del fuso mitotico. L’analisi immunopatologica sugli organoidi ha mostrato che i doppi mutanti riducono significativamente l’espressione del marcatore gliale GFAP, mantenendo un profilo trascrizionale neuroectodermico (Nestina,Vimentina,SOX2,CD133), e presentano cellule multinucleate con nuclei ipercromici, che riflettono le aberrazioni mitotiche comuni nella componente PNC dei tumori. Sorprendentemente, non c’era positività per EBF3 né in GSC né in organoidi dei doppi mutanti. Abbiamo attestato che il promotore di EBF3 è metilato, suggerendo uno stato epigenetico che potrebbe impedire il completo fenotipo bifasico. La mancata espressione ectopica di RB1 nel GBM-PNC potrebbe rafforzare questa ipotesi. Infine, i doppi mutanti irradiati (dati preliminari) sembrano più sensibili ai danni al DNA; data la refrattarietà dei GBM-PNC al convenzionale protocollo terapeutico per GBM (radio-chemioterapia), approfondiremo questo approccio traslazionale. Nel complesso, questi dati confermano che l’interruzione del controllo del ciclo cellulare, per assenza di RB1, sommata all’abolizione dell’apoptosi p53-dipendente potrebbero predisporre allo sviluppo del GBM-PNC, anche se non sufficienti a trasformare un GBM nel fenotipo bifasico.
Contribution of concurrent RB1 and p53 pathways alteration to the development of Glioblastoma with Primitive Neuronal Component
SOMENZA, ELENA
2025
Abstract
Glioblastoma (GBM) is the most frequent primary brain tumour in adults. We studied a rare, aggressive histological subtype: “Glioblastoma with Primitive Neuronal Component” (GBM-PNC). According to WHO (2016), this variant is a mixed glial component (the GBM part) with nodules of immature cells displaying early neuronal differentiation (the PNC part). Alterations in the Retinoblastoma-associated protein 1 (RB1) pathway, with inactivation of RB1 tumour suppressor, have been recently defined as the hallmark of GBM-PNCs. Our data (paper under review) showed that, along with RB1 pathway disruption, p53 pathway alteration are a consistent feature of GBM-PNC tumours. We identified EBF3 transcription factor as a PNC marker promoting an early neuronal phenotype. To better elucidate our findings, we set up an in vitro system to study the effects of RB1 and p53 pathways alteration in patient-derived glioma stem cells (GSCs) in driving the GBM-PNC development. Subpopulations of GSCs are the cause of GBM heterogeneity, tumour relapse and drug resistance, so they are a suitable model for a translational perspective. We created a CRISPR/Cas9 RB1 knockout model, with either loss or retention of p53 functionality, and we transduced an RB1-negative EBF3-positive GBM-PNC GSCs line to test if the ectopic RB1 expression could revert it into a conventional GBM. We characterised all clones by the recovery of the transcriptional levels of E2Fs, downstream RB1 in the control of cell cycle progression, as well as of MYCN/cMYC. We performed functional assays on neurospheres and 3D GSC-derived organoids model, that can recapitulate the features of the tumours. Our data show that the loss of RB1 does not mediate aberrant proliferation and apoptosis activation, with or without p53. The concomitant mutation TP53-RB1 does not influence the invasiveness, but RB1 knockout in a TP53 wildtype context impairs the invasive capacity of the spheroids. Both the cell cycle and the cytogenetic analysis highlighted an increased ploidy in the double-mutants as compared to the mocks and the transcriptomic data confirmed the upregulation of cell cycle phase transition pathways and of mitotic spindle assembly checkpoints. The immunopathological stainings of GSC-derived organoids showed that the double-mutants markedly reduced the expression of GFAP glial marker, while maintaining a neuroectodermal signature (Nestin, Vimentin, SOX2, CD133), and they presented multinucleated cells with hyperchromatic nuclei, mirroring the aberrant mitotic features of the PNC component of tumours. Surprisingly, we did not observe a EBF3 positivity in the double-mutants GSCs, nor in their organoids. We assessed that the EBF3 promoter was methylated, suggesting an epigenetic status that might prevent the gain of a full biphasic phenotype. The failed ectopic expression of RB1 in the GBM-PNC GSCs might reinforce this hypothesis. Finally, upon irradiation (preliminary data), double-mutants were more sensitive to DNA damages. Given the GBM-PNC refractoriness to the conventional GBM therapeutic protocol (radio-chemotherapy), we should further investigate this translational approach. All together, these findings confirm that the combination of cell cycle control disruption via RB1 loss and the p53-dependent apoptosis abolishment could be the predisposing features toward the GBM-PNC development, although this molecular setting is not enough to switch a conventional GBM into the biphasic phenotype.File | Dimensione | Formato | |
---|---|---|---|
Tesi_di_Dottorato Somenza_Elena.pdf
accesso aperto
Dimensione
6.73 MB
Formato
Adobe PDF
|
6.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/190195
URN:NBN:IT:UNIBS-190195