We prove a factorizable version of the Feigin-Frenkel theorem. Given a simple finite dimensional Lie algebra $\mathfrak{g}$ and a smooth curve $C$ over $\mathbb{C}$, we canonically identify the (a fortiori) factorization algebra of the center of the enveloping algebra of the affine Kac-Moody algebra at critical level $\hat{\mathfrak{g}}_{C,k_c}$ with the factorization algebra of functions on the space of $\check{\mathfrak{g}}$-Opers over the pointed disk $\Fun(\Op_{\check{\mathfrak{g}}}(D^*))$, where $\gogl$ is the Langlands dual Lie algebra. In order to do so we develop an extension of the usual concept of field in vertex algebra theory which is well adapted to deal with factorization properties and makes it possible to upgrade vertex algebra statements to their global and factorizable versions.

Spaces of fields and the factorizable Feigin-Frenkel center

CASARIN, LUCA
2025

Abstract

We prove a factorizable version of the Feigin-Frenkel theorem. Given a simple finite dimensional Lie algebra $\mathfrak{g}$ and a smooth curve $C$ over $\mathbb{C}$, we canonically identify the (a fortiori) factorization algebra of the center of the enveloping algebra of the affine Kac-Moody algebra at critical level $\hat{\mathfrak{g}}_{C,k_c}$ with the factorization algebra of functions on the space of $\check{\mathfrak{g}}$-Opers over the pointed disk $\Fun(\Op_{\check{\mathfrak{g}}}(D^*))$, where $\gogl$ is the Langlands dual Lie algebra. In order to do so we develop an extension of the usual concept of field in vertex algebra theory which is well adapted to deal with factorization properties and makes it possible to upgrade vertex algebra statements to their global and factorizable versions.
22-gen-2025
Inglese
DE SOLE, ALBERTO
SPADARO, EMANUELE NUNZIO
Università degli Studi di Roma "La Sapienza"
225
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Casarin.pdf

accesso aperto

Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/190292
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-190292