Power and energy systems are increasingly evolving toward large-scale networked systems with distributed generation units that enable the integration of renewable energy sources, aiming to address environmental and performance-related challenges. However, this transition presents significant obstacles. This research addresses some of these challenges within the context of boost converter-based DC microgrids and counter-current heat exchangers, key components of district heating systems. The proposed methods are further generalized to nonlinear and bilinear systems under specific conditions. This thesis addresses the challenges of designing decentralized controllers for voltage regulation in DC microgrids, ensuring the satisfaction of physical constraints, such as the boundedness of control inputs and state variables, while also enabling ease of implementation. Similar challenges arise in the context of counter-current heat exchangers, where the main objective is temperature regulation. In this thesis, a Lyapunov-based static controller is first proposed for islanded DC microgrids. Decentralized dynamic controllers are then designed for DC microgrids by leveraging the system’s differential passivity property. Physical constraints are satisfied by estimating a feasible region of attraction. The dynamic controller is further extended to generic nonlinear systems with integrable differential passive outputs. The proposed controllers are also applied to counter-current heat exchangers, achieving temperature regulation. Additionally, this thesis develops a unified controller for general multi-input, multi-output bilinear systems with additive and multiplicative terms, encompassing both boost converter-based DC microgrids and counter-current heat exchangers. The proposed controller ensures asymptotic stability and input/output regulation under model uncertainties. Additionally, we also provide an estimation of the feasible region of attraction. To demonstrate its versatility, it is applied to a counter-current heat exchanger, achieving output regulation while meeting physical constraints. All the techniques proposed in this thesis are validated through MATLAB/Simulink simulations, which confirm their effectiveness. Additionally, the decentralized differential passivity-based controller for DC microgrids is implemented on a real-time system using dSPACE interfaces, with experimental results demonstrating its practical efficacy.
I sistemi energetici e di potenza stanno evolvendo rapidamente verso configurazioni su larga scala, caratterizzate da unità di generazione distribuita, che facilitano l'integrazione delle fonti rinnovabili per affrontare le sfide ambientali globali. Tuttavia, questa transizione comporta ostacoli rilevanti. La presente ricerca esplora alcune di queste sfide nel contesto delle micro-reti in corrente continua (CC) e dei sistemi di teleriscaldamento, in cui i convertitori boost e gli scambiatori di calore rappresentano componenti fondamentali. I metodi proposti vengono inoltre estesi a sistemi non lineari e bilineari. In particolare, questa tesi affronta le difficoltà nella progettazione di controllori decentralizzati per la regolazione della tensione nelle micro-reti in CC, con particolare attenzione al rispetto dei vincoli fisici, come la saturazione delle variabili di controllo e di stato, nonché alla facilitazione della loro implementazione. Sfide simili si presentano anche nel contesto degli scambiatori di calore a flusso controcorrente, dove l’obiettivo principale è la regolazione della temperatura. In tale ambito, inizialmente viene proposto un controllore statico basato sulla teoria di Lyapunov per le micro-reti in CC. Successivamente, vengono progettati controllori dinamici decentralizzati, sfruttando la proprietà di passività differenziale del sistema. I vincoli fisici vengono garantiti attraverso una stima adeguata della regione di attrazione. Il controllore dinamico viene quindi esteso a sistemi non lineari generici con uscite passive differenziali integrabili. I controllori proposti sono applicati anche agli scambiatori di calore a flusso controcorrente, con successo nella regolazione della temperatura. Inoltre, questa tesi sviluppa un controllore per sistemi bilineari multi-ingresso multi-uscita, caratterizzati da termini additivi e moltiplicativi, applicabile tanto alle micro-reti in CC con convertitori boost quanto agli scambiatori di calore a flusso controcorrente. Il controllore garantisce stabilità asintotica e una regolazione ingresso/uscita robusta, anche in presenza di incertezze nel modello. Viene fornita, inoltre, una stima della regione di attrazione in cui i vincoli fisici sono rispettati. Per dimostrarne la versatilità, il controllore viene applicato a uno scambiatore di calore a flusso controcorrente, ottenendo la regolazione dell'uscita in conformità ai vincoli fisici. Tutte le tecniche sviluppate sono validate attraverso simulazioni MATLAB/Simulink, che confermano l'efficacia delle soluzioni proposte. Inoltre, il controllore decentralizzato basato sulla passività differenziale per le micro-reti in CC è stato implementato su una micro-rete reale, utilizzando un’interfaccia dSPACE. I risultati sperimentali ottenuti mostrano l'efficacia pratica della soluzione proposta.
"Novel Control Approaches for Bilinear and Nonlinear Systems: Applications to DC Microgrids and Heat Exchangers"
NAZARI MONFARED, MORTEZA
2025
Abstract
Power and energy systems are increasingly evolving toward large-scale networked systems with distributed generation units that enable the integration of renewable energy sources, aiming to address environmental and performance-related challenges. However, this transition presents significant obstacles. This research addresses some of these challenges within the context of boost converter-based DC microgrids and counter-current heat exchangers, key components of district heating systems. The proposed methods are further generalized to nonlinear and bilinear systems under specific conditions. This thesis addresses the challenges of designing decentralized controllers for voltage regulation in DC microgrids, ensuring the satisfaction of physical constraints, such as the boundedness of control inputs and state variables, while also enabling ease of implementation. Similar challenges arise in the context of counter-current heat exchangers, where the main objective is temperature regulation. In this thesis, a Lyapunov-based static controller is first proposed for islanded DC microgrids. Decentralized dynamic controllers are then designed for DC microgrids by leveraging the system’s differential passivity property. Physical constraints are satisfied by estimating a feasible region of attraction. The dynamic controller is further extended to generic nonlinear systems with integrable differential passive outputs. The proposed controllers are also applied to counter-current heat exchangers, achieving temperature regulation. Additionally, this thesis develops a unified controller for general multi-input, multi-output bilinear systems with additive and multiplicative terms, encompassing both boost converter-based DC microgrids and counter-current heat exchangers. The proposed controller ensures asymptotic stability and input/output regulation under model uncertainties. Additionally, we also provide an estimation of the feasible region of attraction. To demonstrate its versatility, it is applied to a counter-current heat exchanger, achieving output regulation while meeting physical constraints. All the techniques proposed in this thesis are validated through MATLAB/Simulink simulations, which confirm their effectiveness. Additionally, the decentralized differential passivity-based controller for DC microgrids is implemented on a real-time system using dSPACE interfaces, with experimental results demonstrating its practical efficacy.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_MNM_PDFA.pdf
embargo fino al 22/04/2025
Dimensione
8.46 MB
Formato
Adobe PDF
|
8.46 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/192428
URN:NBN:IT:UNIPV-192428