This PhD thesis project is devoted to the study of quantum information protocols that define and bridge suitable frontier metrology and routing processes. The main theoretical models adopted are based on Quantum Walk (QW) formalism and on spin chain models. QWs are used to quantum mechanically describe discrete structure, such as routers or optical wave-guides to define the propagation of information or energy in such architectures. Depending on the degrees of freedom of the system itself, the QW model is chosen to be continuous (CTQW) or discrete (DTQW) in time. CTQW are the solution of the Schrodinger dynamics in a discrete space, while DTQW define the time evolution of a walker that has an internal degree of freedom (such as spin or polarization). CTQW can also be interpreted as the study of excitation over the ground state of a physical model such as spin chains, which correspond to the second model treated in this work. These models perfectly combine communications and measurement procedures, allowing the designing of perfect routing and ideal metrological schemes. Spin chains themselves, are used as paradigmatic models with phase transition to characterize metrological procedures, assuming partial accessibility of the system and specifically studying the single and two spins reduced density matrix. This premise provides a non-monotone relation among interaction and measurement precision, proving that correlations can be favorable or detrimental in measurement procedures. The intrinsic and indissoluble relation between phase transitions and metrology was deeply analyzed in recent years. Nonetheless, these results are pioneering in finding that local or quasi-local measurement can actually be implemented to detect phase transitions, leading to the application of the model to quantum metrology, and paving the way to the realization of precise extended sensors requiring only (quasi-)local readout schemes. The thesis is structured as follows. In Chapter 1, it is provided a general introduction to the topics, with an overview of the origin and applications of the theoretical models adopted throughout the work starting from both CTQW and DTQW and concluding with the spin chains. In Chapter 2 and Chapter 3 it is presented the theoretical background and the mathematical and physical tools needed for the analysis of the Quantum Walks models and for the spin chains. Specifically, for CTQW and DTQW was presented the quantum theory for the time evolution in discrete space together with the exact definition of both the time evolution operators and the system states. Regarding spin chains, after the presentation of the basic theoretical background, the main focus was on the partial accessibility assumption, with the definition of the reduced density matrix both for a single and two spins. Chapter 4 represent the core of the theoretical study of the thesis, since it summarize the theory of routing and metrology, fundamentals in communications and measurement protocols. It starts with the definition of classical and quantum Fisher information that respectively defines the amount of information it is possible to extract from a system through a defined measurement procedure and ultimate bound of the knowledge about a system itself. Then, there is the explanation and definition of the transport and routing protocols to steer and guide information in quantum systems. The following part, from Chapter 5 to Chapter 7, provides the original results of the work extracted from my PhD activity at the Modena university supervised by Prof. Paolo Bordone and Prof. Matteo G.A. Paris from Milan University. Finally in Chapter 8 there is a summary of the results obtained with an overall perspective on the future developments of this work. Additional research materials about quantum metrology can be found in Appendix A.
Questo progetto di tesi di dottorato è dedito allo studio di protocolli di informazione quantistica che definiscono e collegano processi di metrologia e routing. I principali modelli adottati si basano sui Quantum Walk (QW) e sui modelli di catene di spin. I QW vengono utilizzati per descrivere strutture discrete, come router o guide d'onda ottiche, per definire la propagazione di informazione o energia in tali architetture. A seconda dei gradi di libertà del sistema, il QW è scelto come continuo (CTQW) o discreto (DTQW) nel tempo. I CTQW sono la soluzione della dinamica di Schrödinger in uno spazio discreto, mentre i DTQW definiscono l'evoluzione temporale di un walker che ha un grado di libertà interno (come lo spin o la polarizzazione). I CTQW possono anche essere interpretati come lo studio di eccitazioni di un modello fisico come le catene di spin, che corrispondono al secondo modello trattato in questo lavoro. Questi modelli combinano perfettamente procedure di comunicazione e misura, permettendo la progettazione di schemi di routing e di metrologia. Le catene di spin vengono utilizzate per lo studio di transizione di fase, assumendo l'accessibilità parziale al sistema, e analizzando specificamente la matrice densità ridotta di uno o due spin. Questa premessa fornisce una relazione non monotona tra interazione e precisione di misura, dimostrando che le correlazioni possono essere favorevoli o dannose nelle procedure di misura. La relazione intrinseca e indissolubile tra transizioni di fase e metrologia è stata profondamente analizzata negli ultimi anni. Tuttavia, questi risultati risultano pionieristici nel dimostrare che misure (quasi-)locali possono effettivamente essere implementate per rilevare transizioni di fase, portando all'applicazione del modello alla metrologia quantistica e a possibili realizzazioni di sensori estesi che richiedono solo schemi di lettura (quasi-)locale. La tesi è strutturata come segue. Il Capitolo 1 presenta un'introduzione generale agli argomenti, con una panoramica dell'origine e delle applicazioni dei modelli teorici adottati, a partire dai QW e concludendo con le catene di spin. I Capitoli 2 e 3 contengono la teoria e gli strumenti necessari per l'analisi dei modelli di QW e per le catene di spin. In particolare, per i CTQW e DTQW è stata presentata la teoria quantistica per l'evoluzione temporale nello spazio discreto insieme alla definizione esatta sia degli operatori di evoluzione temporale che degli stati del sistema. Per quanto riguarda le catene di spin, dopo la presentazione della teoria di base, l'attenzione principale è stata posta sull'ipotesi di accessibilità parziale, con la definizione della matrice densità ridotta sia per uno che per due spin. Il Capitolo 4 rappresenta il nucleo dello studio teorico della tesi, poiché riassume la teoria del routing e della metrologia, fondamentali nei protocolli di comunicazione e misura quantistici. Esso inizia con la definizione della Fisher Information classica e quantistica che rispettivamente definiscono la quantità di informazioni estraibile da un sistema attraverso una procedura di misura e il limite ultimo a tale quantità. Segue la spiegazione e la definizione dei protocolli di trasporto e routing per guidare e indirizzare l'informazione nei sistemi quantistici. La parte successiva, i Capitolo 5 6 e 7, fornisce i risultati originali del lavoro estratti dalla mia attività di dottorato presso l'Università di Modena, supervisionata dal Prof. Paolo Bordone e dal Prof. Matteo G.A. Paris dell'Università di Milano. Infine, il Capitolo 8 riassume i risultati ottenuti con una prospettiva generale sugli sviluppi futuri di questo lavoro. Materiali di ricerca aggiuntivi sulla metrologia quantistica possono essere trovati nell'Appendice A.
Routing quantistico e metrologia: coniugare le comunicazioni e le misurazioni in teoria dell’informazione quantistica
CAVAZZONI, SIMONE
2025
Abstract
This PhD thesis project is devoted to the study of quantum information protocols that define and bridge suitable frontier metrology and routing processes. The main theoretical models adopted are based on Quantum Walk (QW) formalism and on spin chain models. QWs are used to quantum mechanically describe discrete structure, such as routers or optical wave-guides to define the propagation of information or energy in such architectures. Depending on the degrees of freedom of the system itself, the QW model is chosen to be continuous (CTQW) or discrete (DTQW) in time. CTQW are the solution of the Schrodinger dynamics in a discrete space, while DTQW define the time evolution of a walker that has an internal degree of freedom (such as spin or polarization). CTQW can also be interpreted as the study of excitation over the ground state of a physical model such as spin chains, which correspond to the second model treated in this work. These models perfectly combine communications and measurement procedures, allowing the designing of perfect routing and ideal metrological schemes. Spin chains themselves, are used as paradigmatic models with phase transition to characterize metrological procedures, assuming partial accessibility of the system and specifically studying the single and two spins reduced density matrix. This premise provides a non-monotone relation among interaction and measurement precision, proving that correlations can be favorable or detrimental in measurement procedures. The intrinsic and indissoluble relation between phase transitions and metrology was deeply analyzed in recent years. Nonetheless, these results are pioneering in finding that local or quasi-local measurement can actually be implemented to detect phase transitions, leading to the application of the model to quantum metrology, and paving the way to the realization of precise extended sensors requiring only (quasi-)local readout schemes. The thesis is structured as follows. In Chapter 1, it is provided a general introduction to the topics, with an overview of the origin and applications of the theoretical models adopted throughout the work starting from both CTQW and DTQW and concluding with the spin chains. In Chapter 2 and Chapter 3 it is presented the theoretical background and the mathematical and physical tools needed for the analysis of the Quantum Walks models and for the spin chains. Specifically, for CTQW and DTQW was presented the quantum theory for the time evolution in discrete space together with the exact definition of both the time evolution operators and the system states. Regarding spin chains, after the presentation of the basic theoretical background, the main focus was on the partial accessibility assumption, with the definition of the reduced density matrix both for a single and two spins. Chapter 4 represent the core of the theoretical study of the thesis, since it summarize the theory of routing and metrology, fundamentals in communications and measurement protocols. It starts with the definition of classical and quantum Fisher information that respectively defines the amount of information it is possible to extract from a system through a defined measurement procedure and ultimate bound of the knowledge about a system itself. Then, there is the explanation and definition of the transport and routing protocols to steer and guide information in quantum systems. The following part, from Chapter 5 to Chapter 7, provides the original results of the work extracted from my PhD activity at the Modena university supervised by Prof. Paolo Bordone and Prof. Matteo G.A. Paris from Milan University. Finally in Chapter 8 there is a summary of the results obtained with an overall perspective on the future developments of this work. Additional research materials about quantum metrology can be found in Appendix A.File | Dimensione | Formato | |
---|---|---|---|
Tesi_definitiva_Cavazzoni_Simone.pdf
accesso aperto
Dimensione
19.1 MB
Formato
Adobe PDF
|
19.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193935
URN:NBN:IT:UNIMORE-193935