The growing concern about the consequences of climate change is pushing the scientific community to look for alternative ways to produce energy that does not release huge amounts of greenhouse gasses into the atmosphere. Solar energy can be transformed into chemical energy through the use of some compounds, such as cerium oxide, which allow some reactions, such as the electrolysis of water, to be catalyzed using solar energy by photoelectrochemical processes. The reactions are catalyzed by the excited charges in the photocatalyst when it is illuminated by solar light. These charges have a lifetime of the order of hundreds of picoseconds in which they must be able to interact with the surrounding environment to make catalysis occur. It is therefore important to study the temporal evolution of the charges in order to understand the processes that lead to an effective functionality of photocatalysts. Studies of this kind require ultrafast techniques based on free electron lasers, in conjunction with ultrafast visible lasers, to study the evolution of the excited states on timescales from a few tens of femtosecond to hundreds of picoseconds. In the first part of this thesis, the growth and characterization of cerium oxide samples will be described, and the results obtained at the European XFEL in Hamburg, by means of pump-probe X-ray absorption and emission spectroscopy techniques are discussed. In the second part of this thesis, the procedures for the stabilization of niobium oxides in different stoichiometries, namely Nb2O5, NbO2 and NbO, will be described. In particular, Nb2O5 is an interesting photocatalytic material, while NbO2 presents a phase transition from semiconductor to metal at the critical temperature of 800°C, which can also be triggered using visible laser pulses. The samples were also measured by XAS spectroscopy at the European XFEL.
La crescente preoccupazione per le conseguenze del cambiamento climatico sta spingendo la comunità scientifica a cercare modi alternativi per produrre energia che non rilascino enormi quantità di gas serra nell'atmosfera. L'energia solare può essere trasformata in energia chimica attraverso l'uso di alcuni composti, come l'ossido di cerio, che consentono di catalizzare alcune reazioni, come l'elettrolisi dell'acqua, utilizzando l'energia solare tramite processi fotoelettrochimici. Le reazioni sono catalizzate dalle cariche eccitate nel fotocatalizzatore quando viene illuminato dalla luce solare. Queste cariche hanno una durata di vita dell'ordine di centinaia di picosecondi in cui devono essere in grado di interagire con l'ambiente circostante per far avvenire la catalisi. È quindi importante studiare l'evoluzione temporale delle cariche per comprendere i processi che portano a un efficace funzionamento dei fotocatalizzatori. Studi di questo tipo richiedono tecniche ultraveloci basate su laser a elettroni liberi, in combinazione con laser visibili ultraveloci, per studiare l'evoluzione degli stati eccitati su scale temporali da poche decine di femtosecondi a centinaia di picosecondi. Nella prima parte di questa tesi, verranno descritti la crescita e la caratterizzazione di campioni di ossido di cerio e verranno discussi i risultati ottenuti presso l'European XFEL di Amburgo, mediante tecniche di spettroscopia di assorbimento ed emissione di raggi X pump-probe. Nella seconda parte di questa tesi, verranno descritte le procedure per la stabilizzazione di ossidi di niobio in diverse stechiometrie, ovvero Nb2O5, NbO2 e NbO. In particolare, Nb2O5 è un interessante materiale fotocatalitico, mentre NbO2 presenta una transizione di fase da semiconduttore a metallo alla temperatura critica di 800°C, che può essere attivata anche utilizzando impulsi laser visibili. I campioni sono stati inoltre misurati mediante spettroscopia XAS presso l'European XFEL.
Ossidi di cerio e niobio per studi della dinamica ultraveloce degli stati eccitati
PELATTI, SAMUELE
2025
Abstract
The growing concern about the consequences of climate change is pushing the scientific community to look for alternative ways to produce energy that does not release huge amounts of greenhouse gasses into the atmosphere. Solar energy can be transformed into chemical energy through the use of some compounds, such as cerium oxide, which allow some reactions, such as the electrolysis of water, to be catalyzed using solar energy by photoelectrochemical processes. The reactions are catalyzed by the excited charges in the photocatalyst when it is illuminated by solar light. These charges have a lifetime of the order of hundreds of picoseconds in which they must be able to interact with the surrounding environment to make catalysis occur. It is therefore important to study the temporal evolution of the charges in order to understand the processes that lead to an effective functionality of photocatalysts. Studies of this kind require ultrafast techniques based on free electron lasers, in conjunction with ultrafast visible lasers, to study the evolution of the excited states on timescales from a few tens of femtosecond to hundreds of picoseconds. In the first part of this thesis, the growth and characterization of cerium oxide samples will be described, and the results obtained at the European XFEL in Hamburg, by means of pump-probe X-ray absorption and emission spectroscopy techniques are discussed. In the second part of this thesis, the procedures for the stabilization of niobium oxides in different stoichiometries, namely Nb2O5, NbO2 and NbO, will be described. In particular, Nb2O5 is an interesting photocatalytic material, while NbO2 presents a phase transition from semiconductor to metal at the critical temperature of 800°C, which can also be triggered using visible laser pulses. The samples were also measured by XAS spectroscopy at the European XFEL.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis Samuele Pelatti.pdf
accesso aperto
Dimensione
24.93 MB
Formato
Adobe PDF
|
24.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193938
URN:NBN:IT:UNIMORE-193938