Mechanobiology is emerging as a subject that provides useful insights into the implications of external mechanical stimuli on cells and, vice versa, of the forces applied by cells on their external environment. Cells, in fact, not only sense the external environment (mechanosensing), namely the extracellular matrix, but also translate information coming from the outside through mechanotransduction. The processes involve some major actors such as the cell cytoskeleton and protein complexes either anchored to the nuclear membrane (LINC complex) or to the plasma membrane (focal adhesion complexes). Generally, mechanobiology topics consider cell behavior in relation to peculiar characteristics of either the environment or to a specific perturbation (e.g. substrate topology, chemical gradients, pore size, strain stress, shear stress, etc.). This Thesis presents a collection of custom-made cell stretchers designed for time-lapse imaging by optical microscopy of in vitro cells and delves into the response of different cell lines to case specific, tailored mechanical cues, in particular: (i) Human cardiac fibroblasts (HCF) cultured on 2D elastomeric substrates were subjected to different periodic stretching stimuli differing in waveform, frequency and in directionality. This line of enquiry aims at paving the way for a deeper understanding of the effects of mechanical stretch in cardiac fibroblasts as they are the center of a long-lasting biological question regarding their role in repair processes in the heart tissue and the onset of fibrosis. (1) (ii) Glioblastoma cells (U87MG) cultured on 2D μ-patterned substrates were studied to shed light on the effects of substrate topology on cell migration and their mechanical aspects. This topic is related to a methodological question about whether 2D and 3D substrates might or might not yield the same results regarding cell behavior. As a middle ground, quasi-3D substrates with micropillars were used to investigate cell migration. To validate our model by comparison with experiments on glioma cells already present in literature, we studied the effect of blebbistatin (an inhibitor of myosin motors) on U87MG cells. A minor line of enquiry of this work, part of an already established project, was dedicated to assessing the effect of a potential novel drug for cancer treatment, 1g, in both single-cell and collective migration of U87MG cells. (2) (iii) Human colon tumor cells (HCT166) overexpressing the different isoforms of the transcription factor subunit NF-YA were studied in their collective migration. This study was carried out as part of a wider project that aimed at characterizing the different phenotypes and their role in the processes of invasion and metastasis. (2) 1) In collaboration with the INBB Biostructures and Biosystems National Institute in Bologna 2) In collaboration with the Department of Life Sciences of the University of Modena and Reggio Emilia
La meccanobiologia è una disciplina emergente che approfondisce le implicazioni che stimoli meccanici esercitano sulle cellule e le forze che le cellule applicano a loro volta sull’ambiente esterno. Queste non solo avvertono l’ambiente loro circostante, ma recepiscono le informazioni provenienti dall’esterno attraverso la meccanotrasduzione. In questi processi sono coinvolti alcuni attori principali quali il citoscheletro cellulare e complessi proteici ancorati alla membrana nucleare (complesso LINC) e alla membrana plasmatica (adesioni focali). In genere, la meccanobiologia studia il comportamento delle cellule in relazione a caratteristiche peculiari dell’ambiente o in risposta a specifiche perturbazioni (ad es. topologia del substrato, gradienti chimici, dimensione dei pori, strain stress, shear stress, ecc.). Questo lavoro di Tesi presenta un assortimento di cell stretchers sviluppati dal NanoBioLab per acquisire imaging time-lapse al microscopio ottico di cellule in vitro e approfondisce la risposta di diverse linee cellulari a stimoli meccanici specifici, in particolare: (i) Fibroblasti cardiaci (HCF) coltivati su supporti elastomerici 2D sono stati sottoposti a stimoli di stretching periodico, diversi per forma d’onda, frequenza e direzionalità. Questi esperimenti sono stati svolti con lo scopo di gettare le basi per una maggiore comprensione degli effetti dello stretching sui fibroblasti cardiaci, dal momento che essi sono al centro di un lungo dibattito a proposito del loro ruolo nei processi di riparazione tissutale nel miocardio e di fibrosi. (1) (ii) Cellule di glioblastoma multiforme (U87MG) coltivate su supporti μ-patternati sono state studiate per comprendere gli effetti della topologia del substrato sulla migrazione. Questo studio si collega all’interrogativo metodologico sulla trasferibilità dei risultati ottenuti da esperimenti 2D e 3D. Come approccio intermedio, supporti quasi-3D con micropillars sono stati usati per studiare la migrazione cellulare. Per validare il nostro approccio per confronto con esperimenti con cellule di glioma già pubblicati in letteratura abbiamo studiato l’effetto della blebbistatina (un inibitore dei motori di miosina) sulle cellule U87MG. Un obiettivo secondario di questa Tesi, parte di un più ampio progetto esistente, consiste nel valutare l’effetto di un potenziale nuovo farmaco per il trattamento del cancro, denominato 1g, nella migrazione singola e collettiva delle U87MG. (2) (iii) Cellule di tumore del colon (HCT166) over-esprimenti le due isoforme della subunità A del fattore di trascrizione NF-Y sono state analizzate nella loro migrazione collettiva. Questo studio fa parte di un progetto più esteso indirizzato alla caratterizzazione dei diversi fenotipi cellulari presenti nel tumore colon e nell’identificazione del loro ruolo nei processi di invasione e metastasi. (2) 1) In collaborazione con l’Istituto INBB Biostructures and Biosystems National Institute di Bologna 2) In collaborazione con il Dipartimento di Scienze della Vita dell’Università di Modena e Reggio Emilia
Approcci per lo studio della risposta cellulare a stimoli meccanici
BIGHI, BEATRICE
2025
Abstract
Mechanobiology is emerging as a subject that provides useful insights into the implications of external mechanical stimuli on cells and, vice versa, of the forces applied by cells on their external environment. Cells, in fact, not only sense the external environment (mechanosensing), namely the extracellular matrix, but also translate information coming from the outside through mechanotransduction. The processes involve some major actors such as the cell cytoskeleton and protein complexes either anchored to the nuclear membrane (LINC complex) or to the plasma membrane (focal adhesion complexes). Generally, mechanobiology topics consider cell behavior in relation to peculiar characteristics of either the environment or to a specific perturbation (e.g. substrate topology, chemical gradients, pore size, strain stress, shear stress, etc.). This Thesis presents a collection of custom-made cell stretchers designed for time-lapse imaging by optical microscopy of in vitro cells and delves into the response of different cell lines to case specific, tailored mechanical cues, in particular: (i) Human cardiac fibroblasts (HCF) cultured on 2D elastomeric substrates were subjected to different periodic stretching stimuli differing in waveform, frequency and in directionality. This line of enquiry aims at paving the way for a deeper understanding of the effects of mechanical stretch in cardiac fibroblasts as they are the center of a long-lasting biological question regarding their role in repair processes in the heart tissue and the onset of fibrosis. (1) (ii) Glioblastoma cells (U87MG) cultured on 2D μ-patterned substrates were studied to shed light on the effects of substrate topology on cell migration and their mechanical aspects. This topic is related to a methodological question about whether 2D and 3D substrates might or might not yield the same results regarding cell behavior. As a middle ground, quasi-3D substrates with micropillars were used to investigate cell migration. To validate our model by comparison with experiments on glioma cells already present in literature, we studied the effect of blebbistatin (an inhibitor of myosin motors) on U87MG cells. A minor line of enquiry of this work, part of an already established project, was dedicated to assessing the effect of a potential novel drug for cancer treatment, 1g, in both single-cell and collective migration of U87MG cells. (2) (iii) Human colon tumor cells (HCT166) overexpressing the different isoforms of the transcription factor subunit NF-YA were studied in their collective migration. This study was carried out as part of a wider project that aimed at characterizing the different phenotypes and their role in the processes of invasion and metastasis. (2) 1) In collaboration with the INBB Biostructures and Biosystems National Institute in Bologna 2) In collaboration with the Department of Life Sciences of the University of Modena and Reggio EmiliaFile | Dimensione | Formato | |
---|---|---|---|
Tesi definitiva BIGHI BEATRICE.pdf
accesso aperto
Dimensione
10.08 MB
Formato
Adobe PDF
|
10.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/193939
URN:NBN:IT:UNIMORE-193939