Understanding the nature and the properties of fluid flows is an interesting problem connected to a great variety of real systems ranging from geophysical flows deep down to the smallest systems used in recent micro-technological devices. Unfortunately, all the attempts to description of nature encounter strongly nonlinearities. This is the reason why computational and theoretical modelling play a relevant role in the understanding and characterization of the properties of real flows. On the theoretical side, a systematic exploration of the small scale fluid properties is carried out based on stochastic dynamical closures applied to non linear models (Shell Models). The nature of the statistical properties at such scales is well known to possess anomalous scaling laws and their physical origin is still under discussion. The proposed closures approaches provide a physical background to explain the onset of the anomalous properties of small scale turbulent flows and successfully compare with real experimental data. On a more applicative background, a kinetic based approach to micro-hydrodynamics has been developed here. This method is based on discrete version of the Boltzmann Equations (Lattice Boltzmann equations) and is well established for the simulations of hydrodynamics. The original contribution has been the enrichment of the method towards a realistic description of the interactions between a fluid and a solid boundary. This offers a flexible way to model slip boundary conditions, capillary effects and more generally, all the surface phenomena that correctly identify a fluid flow confined to the micro-scale.
Lo studio sviluppato in questa tesi di dottorato è rivolto principalmente alla comprensione di proprietà di fluidi su grande e piccola scala. Tutti i tentativi di descrizione incontrano sfortunatamente aspetti non lineari nelle equazioni del moto che sono difficilmente trattabili. Questo è il motivo per cui modellizazioni computazionali e teoriche possono essere di grande aiuto. Per quanto riguarda l’aspetto teorico, una esplorazione sistematica delle proprietà statistiche di un fluido turbolento a piccola scala è stata effettuata su modelli deterministici noti come modelli a Shell. L’approccio consiste nell’applicare chiusure basate su teorie stocastiche alle equazioni del moto per poterne quantificare le anomalie. Infatti, la natura di tali fluttuazioni statistiche è ben nota possedere proprietà di scala anomale e la loro origine è tuttora materia di discussione. I modelli stocastici qui trattati forniscono il corretto background con cui poter interpretare e calcolare le anomalie statistiche che risultano essere in ottimo accordo con i dati sperimentali. Sul lato più applicativo, viene proposto in questa tesi un approccio cinetico per problemi di micro-idrodinamica. Il metodo si basa su versioni discrete della equazione di Boltzmann (Lattice Boltzamann equation) ed è ben assestato come metodo teorico e computazionale per la simulazione di problemi idrodinamici. Il contributo originale proposto consiste nell’arricchimento del metodo per una descrizione realistica delle interazioni fluido-parete. Questo permette di trattare flessibilmente condizioni al boundary non ordinarie, effetti capillari e, più in generale, tutti i fenomeni di superficie che identificano un fluido interagente con scale dell’ordine di grandezza del micron.
Modelling fluid dynamics at high and low reynolds numbers
SBRAGAGLIA, MAURO
2005
Abstract
Understanding the nature and the properties of fluid flows is an interesting problem connected to a great variety of real systems ranging from geophysical flows deep down to the smallest systems used in recent micro-technological devices. Unfortunately, all the attempts to description of nature encounter strongly nonlinearities. This is the reason why computational and theoretical modelling play a relevant role in the understanding and characterization of the properties of real flows. On the theoretical side, a systematic exploration of the small scale fluid properties is carried out based on stochastic dynamical closures applied to non linear models (Shell Models). The nature of the statistical properties at such scales is well known to possess anomalous scaling laws and their physical origin is still under discussion. The proposed closures approaches provide a physical background to explain the onset of the anomalous properties of small scale turbulent flows and successfully compare with real experimental data. On a more applicative background, a kinetic based approach to micro-hydrodynamics has been developed here. This method is based on discrete version of the Boltzmann Equations (Lattice Boltzmann equations) and is well established for the simulations of hydrodynamics. The original contribution has been the enrichment of the method towards a realistic description of the interactions between a fluid and a solid boundary. This offers a flexible way to model slip boundary conditions, capillary effects and more generally, all the surface phenomena that correctly identify a fluid flow confined to the micro-scale.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
non disponibili
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/195085
URN:NBN:IT:UNIROMA2-195085