Tuberculosis remains one of the leading causes of mortality worldwide and is caused by Mycobacterium tuberculosis. The infection typically begins in the lungs, where bronchial epithelial cells serve as the first line of defense against the pathogen. The immune response in the lungs leads to the formation of granulomas, structured cellular aggregates designed to contain the pathogen. However, the pulmonary microenvironment is frequently exposed to oxidative stress conditions, which can increase cell susceptibility to infection. Despite extensive research using animal models and bidimensional (2D) cellular systems, these models often fail to replicate lung tissue's cellular interactions and physiological conditions accurately. This thesis focuses on developing a three-dimensional (3D) bioprinted lung model to mimic a tubercular granuloma. The aim is to better understand how the lung microenvironment, particularly in the presence of oxidative stress-inducing molecules such as nicotine (commonly associated with smokers), influences the establishment of Mycobacterium tuberculosis infection and subsequent granuloma formation. In this study, three cell types were employed: human bronchial epithelial cells (HBEC3-KT) for the epithelial barrier, human leukemia monocytic cell line (THP-1) differentiated into macrophages to represent the immune component, and human lung fibroblasts (HLF hTERT) to provide connective tissue support. Infections were conducted using a Mycobacterium tuberculosis reference strain H37Rv (mCHERRY+) fluorescent mutant. Oxidative stress conditions were optimized using 2D experiments, and a nicotine concentration of 40 µM was selected as the final exposure condition. Cell viability was evaluated using Alamar Blue assays for 2D cultures and Live/Dead staining for 3D cultures, while bacterial load was quantified using colony-forming unit counts. The results demonstrated that Mycobacterium tuberculosis is more prone to infect the granuloma-like structures designed in the study when pre-treated with nicotine. This innovative 3D model offers a physiologically relevant platform to study the molecular dynamics between lung cells and Mycobacterium tuberculosis during the early stages of infection and granuloma formation. Furthermore, it addresses limitations associated with 2D cultures by enabling the exploration of oxidative stress-inducing molecules, such as nicotine, in a fully humanized and dynamic model.
La tubercolosi è una delle principali cause di mortalità a livello globale ed è causata da Mycobacterium tuberculosis. L'infezione inizia tipicamente nei polmoni, dove le cellule epiteliali bronchiali rappresentano la prima linea di difesa locale contro il patogeno. La risposta immunitaria polmonare porta alla formazione di granulomi, aggregati cellulari strutturati volti a contenere il microrganismo. Tuttavia, il microambiente polmonare è frequentemente esposto a condizioni di stress ossidativo, che possono aumentare la suscettibilità cellulare all'infezione. Nonostante i numerosi studi condotti su modelli animali e sistemi cellulari bidimensionali (2D), questi modelli spesso non riescono a replicare accuratamente le interazioni cellulari e le condizioni fisiologiche del tessuto polmonare. Questa tesi si concentra sullo sviluppo di un modello polmonare tridimensionale sviluppato tramite un sistema di bioprinting che ha come scopo finale quello di simulare un granuloma tubercolare, al fine di approfondire la comprensione di come il microambiente polmonare, in particolare in presenza di molecole che inducono stress ossidativo come la nicotina, influenzi l’instaurarsi dell’infezione da Mycobacterium tuberculosis e la successiva formazione del granuloma. Nello studio sono stati utilizzati tre tipi cellulari: cellule epiteliali bronchiali umane (HBEC3-KT) per la barriera epiteliale, cellule monocitiche umane derivate dalla linea cellulare leucemica (THP-1) differenziate in macrofagi per rappresentare la componente immunitaria, e fibroblasti polmonari umani (HLF hTERT) per ricreare il supporto connettivale. Le infezioni sono state condotte utilizzando un mutante fluorescente del ceppo di riferimento Mtb H37Rv (mCHERRY+). Le condizioni di stress ossidativo sono state ottimizzate attraverso esperimenti in 2D, selezionando una concentrazione finale di nicotina pari a 40 µM. La vitalità cellulare è stata valutata tramite saggi Alamar Blue per le colture 2D e colorazioni Live/Dead per le colture 3D, mentre il carico batterico è stato quantificato mediante conteggio delle unità formanti colonie. I risultati hanno dimostrato che Mycobacterium tuberculosis ha una maggiore propensione a infettare le strutture simili a granulomi progettate nello studio dopo pre-trattamento con nicotina. Questo modello 3D innovativo offre una piattaforma fisiologicamente rilevante per studiare le dinamiche molecolari tra le cellule polmonari e Mycobacterium tuberculosis durante le fasi iniziali dell'infezione e della formazione del granuloma. Inoltre, affronta le limitazioni dei modelli 2D, consentendo l’esplorazione di molecole che inducono stress ossidativo, come la nicotina, in un sistema completamente umanizzato e dinamico.
From flat to spatial: transitioning from 2D to 3D in vitro models for Nicotine based oxidative Stress and lung granuloma formation
FRANCO, CATERINA
2025
Abstract
Tuberculosis remains one of the leading causes of mortality worldwide and is caused by Mycobacterium tuberculosis. The infection typically begins in the lungs, where bronchial epithelial cells serve as the first line of defense against the pathogen. The immune response in the lungs leads to the formation of granulomas, structured cellular aggregates designed to contain the pathogen. However, the pulmonary microenvironment is frequently exposed to oxidative stress conditions, which can increase cell susceptibility to infection. Despite extensive research using animal models and bidimensional (2D) cellular systems, these models often fail to replicate lung tissue's cellular interactions and physiological conditions accurately. This thesis focuses on developing a three-dimensional (3D) bioprinted lung model to mimic a tubercular granuloma. The aim is to better understand how the lung microenvironment, particularly in the presence of oxidative stress-inducing molecules such as nicotine (commonly associated with smokers), influences the establishment of Mycobacterium tuberculosis infection and subsequent granuloma formation. In this study, three cell types were employed: human bronchial epithelial cells (HBEC3-KT) for the epithelial barrier, human leukemia monocytic cell line (THP-1) differentiated into macrophages to represent the immune component, and human lung fibroblasts (HLF hTERT) to provide connective tissue support. Infections were conducted using a Mycobacterium tuberculosis reference strain H37Rv (mCHERRY+) fluorescent mutant. Oxidative stress conditions were optimized using 2D experiments, and a nicotine concentration of 40 µM was selected as the final exposure condition. Cell viability was evaluated using Alamar Blue assays for 2D cultures and Live/Dead staining for 3D cultures, while bacterial load was quantified using colony-forming unit counts. The results demonstrated that Mycobacterium tuberculosis is more prone to infect the granuloma-like structures designed in the study when pre-treated with nicotine. This innovative 3D model offers a physiologically relevant platform to study the molecular dynamics between lung cells and Mycobacterium tuberculosis during the early stages of infection and granuloma formation. Furthermore, it addresses limitations associated with 2D cultures by enabling the exploration of oxidative stress-inducing molecules, such as nicotine, in a fully humanized and dynamic model.File | Dimensione | Formato | |
---|---|---|---|
FRANCO CATERINA.pdf
accesso aperto
Dimensione
8.3 MB
Formato
Adobe PDF
|
8.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196365
URN:NBN:IT:UNIBS-196365