Diploid organisms are provided with nearly identical pairs of each gene, and generally, both alleles are transcribed at the same level. However, there are some exceptions: genes on the X chromosome, which are subject to mechanisms for dosage compensation, and imprinted genes, which are expressed from a specific parental allele. Recently, it has been demonstrated that numerous autosomal genes are also expressed in a monoallelic manner. This behavior, as shown by recent publications, is transient during developmental stages and is tissue and cell type specific. This evidence suggests the importance of rethinking expression studies in terms of allele-specific expression. For example, many genetic variants that influence human phenotypes and diseases are heterozygous, and studying allele-specific expression could unravel the functional significance of these sites and provide insights into genotype-phenotype correlations. Moreover, it is increasingly believed that epigenetic factors play a role in allelic differential expression. Specifically, it has been shown that allele-specific expression (ASE) and chromatin accessibility (ASA) can have a significant combined influence in both physiological and pathological states. However, given the high heterogeneity of available analytical approaches, the scientific community would benefit from an integrated bioinformatics pipeline that allows for the joint analysis of ASA and ASE. We have therefore developed a computational approach called ASTRA (Allele Specific Transcriptional Regulation Analysis), organized as an automated and reproducible workflow. ASTRA enables the integrated analysis of allele-specific expression and chromatin accessibility from raw RNA sequencing and/or chromatin accessibility data, in bulk or single-cell contexts. To obtain a refined tool applicable to various contexts and easy to use, we applied and tested ASTRA on several case studies, demonstrating its efficacy and utility. ASTRA thus proposes itself as a tool to provide a snapshot of the transcriptional landscape of the entire genome and to improve our understanding of the factors determining allelic differential expression.
Gli organismi diploidi sono provvisti di due copie quasi identiche per ogni gene e, generalmente, entrambi gli alleli sono trascritti allo stesso livello. Tuttavia, sono presenti alcune eccezioni: i geni del cromosoma X, soggetti a meccanismi di di compensazione del dosaggio, e i geni dell’imprinting, espressi da uno specifico allele parentale. Recentemente è stato dimostrato che anche numerosi geni autosomici sono espressi in modo monoallelico. Questo comportamento, come mostrano recenti pubblicazioni, è transitorio durante le fasi di sviluppo e, inoltre, risulta essere specifico per il tipo di tessuto e per il gruppo cellulare. Questa evidenza ci suggerisce l'importanza di ripensare gli studi di espressione in termini di espressione allele specifica. Ad esempio, molte varianti genetiche che influenzano i fenotipi e le malattie umane sono eterozigoti e lo studio dell'espressione allele specifica potrebbe districare il significato funzionale di questi siti e fornire approfondimenti in termini di correlazioni genotipo-fenotipo. Inoltre, si ritiene sempre più che i fattori epigenetici svolgano un ruolo anche sull'espressione allelica differenziale. In particolare, è stato dimostrato che la specificità allelica sia dell'espressione (ASE) che dell'accessibilità della cromatina (ASA) possono avere un'importante influenza congiunta sia in stati fisiologici che in quelli patologici. Tuttavia, data l'elevata eterogeneità degli approcci analitici disponibili, la comunità scientifica trarrebbe vantaggio da una pipeline bioinformatica integrata che consenta l'analisi congiunta ASA e ASE. Abbiamo pertanto sviluppato un approccio computazionale denominato ASTRA (Allelic Specific Transcriptional Regulation Analysis), organizzato come flusso di lavoro automatizzato e riproducibile. ASTRA consente l'analisi integrata dell’espressione e accessibilità allele-specifica a partire da dati grezzi di sequenziamento RNA e/o di accessibilità della cromatina, in bulk o a singola cellula. Per poter ottenere uno strumento raffinato, applicabile a diversi contesti e di facile utilizzo, abbiamo applicato e testato ASTRA a diversi casi studio dimostrandone l’efficacia e l’utilità. ASTRA si propone quindi come uno strumento per fornire un'istantanea del panorama trascrizionale dell'intero genoma e per migliorare la nostra comprensione dei fattori determinanti dell'espressione allelica differenziale.
The development of ASTRA, an automatized workflow for allele specific expression and chromatin accessibility analysis from high-throughput sequencing data.
MATTEVI, STEFANIA
2025
Abstract
Diploid organisms are provided with nearly identical pairs of each gene, and generally, both alleles are transcribed at the same level. However, there are some exceptions: genes on the X chromosome, which are subject to mechanisms for dosage compensation, and imprinted genes, which are expressed from a specific parental allele. Recently, it has been demonstrated that numerous autosomal genes are also expressed in a monoallelic manner. This behavior, as shown by recent publications, is transient during developmental stages and is tissue and cell type specific. This evidence suggests the importance of rethinking expression studies in terms of allele-specific expression. For example, many genetic variants that influence human phenotypes and diseases are heterozygous, and studying allele-specific expression could unravel the functional significance of these sites and provide insights into genotype-phenotype correlations. Moreover, it is increasingly believed that epigenetic factors play a role in allelic differential expression. Specifically, it has been shown that allele-specific expression (ASE) and chromatin accessibility (ASA) can have a significant combined influence in both physiological and pathological states. However, given the high heterogeneity of available analytical approaches, the scientific community would benefit from an integrated bioinformatics pipeline that allows for the joint analysis of ASA and ASE. We have therefore developed a computational approach called ASTRA (Allele Specific Transcriptional Regulation Analysis), organized as an automated and reproducible workflow. ASTRA enables the integrated analysis of allele-specific expression and chromatin accessibility from raw RNA sequencing and/or chromatin accessibility data, in bulk or single-cell contexts. To obtain a refined tool applicable to various contexts and easy to use, we applied and tested ASTRA on several case studies, demonstrating its efficacy and utility. ASTRA thus proposes itself as a tool to provide a snapshot of the transcriptional landscape of the entire genome and to improve our understanding of the factors determining allelic differential expression.File | Dimensione | Formato | |
---|---|---|---|
tesi_Mattevi_definitiva.pdf
embargo fino al 11/03/2027
Dimensione
10.43 MB
Formato
Adobe PDF
|
10.43 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196367
URN:NBN:IT:UNIBS-196367