The widespread prevalence and substantial burden of lung diseases on human health, of which Chronic Obstructive Pulmonary Disease (COPD) is a prototypical example, emphasize the need for improved research models to better understand lung pathophysiology and to speed up the development of innovative and more specific therapeutic strategies. Air-Liquid Interface (ALI) models stand out as powerful tools for mimicking the airway microenvironment by replicating essential in vivo barrier characteristics and closing mirroring the phenotype of human airway tissues. In this project, we aimed at setting up the conditions for in house culturing and manipulation of an ALI model of human airway epithelium, with the overarching goal to achieve an advanced 3D model for the study of COPD and possibly of other inflammatory diseases of the respiratory tract.MucilAir ALI cultures were grown in standard proprietary medium (mono-cultures) or medium enriched with 1% FBS (co-cultures) and assessed for barrier functions by transepithelial electrical resistance (TEER), for vitality by the release of lactate dehydrogenase (LDH) and for morphology by histology. Induction of Goblet Cell Hyperplasia (GCH) was assessed by histological analysis in terms of accumulation of PAS-positive secretory granules and by immunofluorescence by staining for Muc5AC and FoxJ1 in both static and dynamic conditions. Frozen peripheral blood mononuclear cells (PBMCs) were thawed in RPMI 10% FBS, left to recover for 2 hours and then resuspended in ALI medium supplemented with 1% FBS for co-culture. Vitality was assessed by LDH release and functional properties by comparison of TNFα release in respect to fresh PBMCs and standard medium. LPS was used as a prototypical inflammatory stimulus. Gene expression and protein secretion were assessed by real-time PCR on total mRNA and ELISA on cell-free-supernatants respectively. When possible, due to sample availability and time constraints, we compared the behaviour of ALI cultures from healthy and COPD donors or from different producers such as MucilAir and EpiAirway.First, we reproduced a goblet hyperplastic phenotype in human airway epithelial cells cultured under ALI conditions following IL-13 stimulation. IL-13 inhibitor, a fully monoclonal antibody against a common IL-4/IL-13 receptor chain, reverted this phenotype in a dose dependent manner and also reverted the modulation of mucin-related genes. Second, we aimed at inducing inflammation in the ALI model. In this context, we confirmed the refractoriness of epithelial cells to LPS stimulation and set up an epithelial/immune co-culture, using frozen PBMCs as the immune component, in which epithelial activation is indirectly induced by activated immune cells. Third, we obtained the proof of concept that our inflamed co-culture ALI model can be used to study the effects of anti-inflammatory drugs, such as Chiesi Farmaceutici’s proprietary PDE4 inhibitor Tanimilast. As a side project, we investigated whether human dendritic cell activation induced by TSLP, an alarmin involved in Th2 activation in Asthma-COPD Overlap Syndrome (ACOS) could be influenced by the treatment with Tanimilast. We characterized advanced models of human primary airway epithelial cells at ALI that more closely resembles what happens in vivo and gained proof of concept that the epithelial/immune co-culture ALI model is feasible and applicable to the study of inflammation and anti-inflammatory drugs in in vitro settings.
L'ampia diffusione e il peso sostanziale delle malattie polmonari sulla salute umana, di cui la broncopneumopatia cronica ostruttiva (BPCO), sottolineano la necessità di migliorare i modelli di ricerca per comprendere meglio la fisiopatologia polmonare e accelerare lo sviluppo di strategie terapeutiche innovative e più specifiche. I modelli di interfaccia aria-liquido (ALI) si distinguono come potenti strumenti per mimare il microambiente delle vie aeree, replicando le caratteristiche essenziali della barriera in vivo e rispecchiando il fenotipo dei tessuti delle vie aeree umane.In questo progetto, abbiamo cercato di creare le condizioni per la coltura e la manipolazione in casa di un modello ALI di epitelio delle vie aeree umane, con l'obiettivo generale di ottenere un modello 3D avanzato per lo studio della BPCO. Le colture di MucilAir ALI sono state coltivate in terreno proprietario standard (monocolture) o in terreno arricchito con l'1% di FBS (co-colture) e valutate per le funzioni di barriera mediante la resistenza elettrica transepiteliale (TEER), per la vitalità mediante il rilascio di lattato deidrogenasi (LDH) e per la morfologia mediante l'istologia. L'induzione dell'iperplasia delle cellule di goblet (GCH) è stata valutata mediante analisi istologica in termini di accumulo di granuli secretori PAS-positivi e mediante immunofluorescenza con colorazione per Muc5AC e FoxJ1 in condizioni statiche e dinamiche. Le cellule mononucleate del sangue periferico (PBMC) congelate sono state scongelate in RPMI 10% FBS, lasciate recuperare per 2 ore e poi risospese in terreno ALI integrato con 1% FBS per la co-coltura. La vitalità è stata valutata mediante il rilascio di LDH e le proprietà funzionali mediante il confronto del rilascio di TNFα rispetto alle PBMC fresche e al terreno standard. LPS è stato utilizzato come stimolo infiammatorio prototipico. L'espressione genica e la secrezione proteica sono state valutate rispettivamente analisi PCR sull'mRNA totale e con l'ELISA sui supernatanti. Quando possibile, a causa della disponibilità dei campioni e dei vincoli di tempo, abbiamo confrontato il comportamento di colture di ALI provenienti da donatori sani e BPCO o da produttori diversi, come MucilAir ed EpiAirway. In primo luogo, abbiamo riprodotto un fenotipo iperplastico delle cellule goblet nelle cellule epiteliali delle vie aeree umane coltivate in condizioni di ALI in seguito a stimolazione con IL-13. L'inibitore dell'IL-13, un anticorpo monoclonale, ha revertito questo fenotipo in modo dose-dipendente e anche la modulazione dei geni legati alla mucina. In secondo luogo, abbiamo cercato di indurre l'infiammazione nel modello ALI. In questo contesto, abbiamo confermato la refrattarietà delle cellule epiteliali alla stimolazione con LPS e abbiamo allestito una co-cultura epiteliale/immunitaria, utilizzando PBMC congelate come componente immunitaria, in cui l'attivazione epiteliale è indirettamente indotta dalle cellule immunitarie attivate. In terzo luogo, abbiamo ottenuto la prova di concetto che il nostro modello di ALI in co-cultura infiammata può essere utilizzato per studiare gli effetti di farmaci antinfiammatori, come l'inibitore della PDE4 Tanimilast, di proprietà di Chiesi Farmaceutici. Come progetto collaterale, abbiamo studiato se l'attivazione delle cellule dendritiche umane indotta da TSLP, un'allarmina coinvolta nell'attivazione Th2 nella sindrome da sovrapposizione asma-COPD (ACOS), potesse essere influenzata dal trattamento con Tanimilast. Abbiamo caratterizzato modelli avanzati di cellule epiteliali primarie delle vie aeree umane in ALI che assomigliano più da vicino a ciò che accade in vivo e abbiamo ottenuto la prova di concetto che il modello di co-cultura epiteliale/immune ALI è fattibile e applicabile allo studio dell'infiammazione e dei farmaci antinfiammatori in vitro.
Development of advanced models of human airway epithelium to study chronic obstructive pulmonary disease (COPD)
RIPARI, GIULIA
2025
Abstract
The widespread prevalence and substantial burden of lung diseases on human health, of which Chronic Obstructive Pulmonary Disease (COPD) is a prototypical example, emphasize the need for improved research models to better understand lung pathophysiology and to speed up the development of innovative and more specific therapeutic strategies. Air-Liquid Interface (ALI) models stand out as powerful tools for mimicking the airway microenvironment by replicating essential in vivo barrier characteristics and closing mirroring the phenotype of human airway tissues. In this project, we aimed at setting up the conditions for in house culturing and manipulation of an ALI model of human airway epithelium, with the overarching goal to achieve an advanced 3D model for the study of COPD and possibly of other inflammatory diseases of the respiratory tract.MucilAir ALI cultures were grown in standard proprietary medium (mono-cultures) or medium enriched with 1% FBS (co-cultures) and assessed for barrier functions by transepithelial electrical resistance (TEER), for vitality by the release of lactate dehydrogenase (LDH) and for morphology by histology. Induction of Goblet Cell Hyperplasia (GCH) was assessed by histological analysis in terms of accumulation of PAS-positive secretory granules and by immunofluorescence by staining for Muc5AC and FoxJ1 in both static and dynamic conditions. Frozen peripheral blood mononuclear cells (PBMCs) were thawed in RPMI 10% FBS, left to recover for 2 hours and then resuspended in ALI medium supplemented with 1% FBS for co-culture. Vitality was assessed by LDH release and functional properties by comparison of TNFα release in respect to fresh PBMCs and standard medium. LPS was used as a prototypical inflammatory stimulus. Gene expression and protein secretion were assessed by real-time PCR on total mRNA and ELISA on cell-free-supernatants respectively. When possible, due to sample availability and time constraints, we compared the behaviour of ALI cultures from healthy and COPD donors or from different producers such as MucilAir and EpiAirway.First, we reproduced a goblet hyperplastic phenotype in human airway epithelial cells cultured under ALI conditions following IL-13 stimulation. IL-13 inhibitor, a fully monoclonal antibody against a common IL-4/IL-13 receptor chain, reverted this phenotype in a dose dependent manner and also reverted the modulation of mucin-related genes. Second, we aimed at inducing inflammation in the ALI model. In this context, we confirmed the refractoriness of epithelial cells to LPS stimulation and set up an epithelial/immune co-culture, using frozen PBMCs as the immune component, in which epithelial activation is indirectly induced by activated immune cells. Third, we obtained the proof of concept that our inflamed co-culture ALI model can be used to study the effects of anti-inflammatory drugs, such as Chiesi Farmaceutici’s proprietary PDE4 inhibitor Tanimilast. As a side project, we investigated whether human dendritic cell activation induced by TSLP, an alarmin involved in Th2 activation in Asthma-COPD Overlap Syndrome (ACOS) could be influenced by the treatment with Tanimilast. We characterized advanced models of human primary airway epithelial cells at ALI that more closely resembles what happens in vivo and gained proof of concept that the epithelial/immune co-culture ALI model is feasible and applicable to the study of inflammation and anti-inflammatory drugs in in vitro settings.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Ripari Corretta.pdf
accesso aperto
Dimensione
10.7 MB
Formato
Adobe PDF
|
10.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/196919
URN:NBN:IT:UNIBS-196919