Urban Air Mobility (UAM) is an advanced air transportation system for passengers and cargo emerging in the last few years with the aim of moving part of the urban transportation into the third dimension. The conceptualization of the UAM ecosystem has started in the last decade, focusing on the integration of different aircraft configurations in a mobility system around densely populated environments. Vertical Take-Off and Landing aircraft (VTOLs) are central to the UAM concept. The main requirement for an aerial vehicle to operate in a UAM ecosystem is to guarantee the capability of taking-off and landing within restricted areas. The means of transport has to be sustainable in terms of CO2 emissions and operate along specific routes with the aim of reducing urban traffic and travel time. To all of these extents, this work is inserted in the analysis of a specific VTOL configuration that can serve as a suitable candidate for future UAM services. The main goal of this work, is to select a rotorcraft configuration and carry out an in-depth analysis of its performance, trim, stability and flight dynamic properties, by developing innovative numerical tools that can be adapted for multiple layouts. Mostly focusing on rotary wing technologies, the thesis identifies in the side – by – side helicopter configuration the majority of the requirements fulfilled for providing aerial urban transportation in the near future. The original contribution to the scientific community is provided by the simulation platform created for studying performance and flight dynamic characteristics. The thesis provides a set of performance analysis tools, adopted for studying the capabilities of different propulsion systems and their performance along specific mission scenarios (endurance, range, payload…). The core section of the study is the simulation and modeling of the main dynamic features: flight physics, trim and stability and assessed with two different approaches, an analytical and a numerical one. The first one provides a simpler mathematical framework, with a reduced number of degrees of freedom, suitable for preliminary trim and stability studies. While this approach could be enough to be implemented in a physical simulator, specific rotor dynamics and their effects on rigid body stability requires an advanced modeling methodology. An original, numerical, flight dynamics model with 24 degrees of freedom has been developed for a deeper study of the single rotor characteristics and coupling effects with the rigid body modes. An attitude and velocity control system is developed in order to evaluate flying qualities and perform real time flight simulation in a software/hardware in the loop setup. The analysis provides fundamental insights on the performance of specific rotary – wing VTOLs and discusses on their endurance, power and payload capabilities. The selection of the reference configuration is based on the performance results coupled with a qualitative discussion on additional aspects concerning UAM requirements. The trim and stability analysis highlighted the presence of longitudinal instabilities linked to the specific configuration and the position of its center of gravity. The comparison between the two approaches showed how the accuracy of the main rotor modeling affects the prediction of the rigid body stability, while the decoupling of rotor dynamics allows for studying the isolated effects of blade flap, lead – lag and inflow. The manuscript presents the side – by – side helicopter as a viable candidate for future UAM services, highlighting its performance and dynamic capabilities. The simulation platform developed in this work represents a solid tool that can be adapted in the future for studying alternative VTOL configurations, perform advanced control system design and flight simulations in a secured and controlled environment.
Urban Air Mobility (UAM) definisce un sistema avanzato di trasporto aereo per passeggeri e merci, emerso negli ultimi anni con l’obiettivo di spostare parte del trasporto urbano nella terza dimensione. L’elaborazione di un ecosistema UAM è iniziata nell’ultimo decennio, al fine di integrare diverse configurazioni di aeromobili in un sistema di trasporto in aree densamente popolate. I principali protagonisti della UAM sono gli aeromobili a decollo e atterraggio verticale (VTOL), requisito fondamentale per un velivolo che deve operare in aree ristrette. Il sistema di trasporto deve inoltre essere sostenibile e garantire la riduzione del traffico urbano e i tempi di viaggio. Il presente lavoro si inserisce in questo contesto con l’analisi di una configurazione VTOL specifica, presentandola come un valido candidato per i futuri servizi UAM. L’obiettivo principale del lavoro è infatti quello di individuare tale configurazione e condurre un’analisi dettagliata delle sue prestazioni, condizioni di trim e stabilità e studiarne la dinamica del volo mediante modelli numerici innovativi e adattabili a diversi layout. Facendo particolare riferimento alle tecnologie ad ala rotante, la tesi identifica nella configurazione elicottero side-by-side la soluzione che soddisfa la maggior parte dei requisiti per il trasporto aereo urbano nel prossimo futuro. Il contributo originale alla comunità scientifica è fornito dalla piattaforma di simulazione sviluppata appositamente per lo studio di tale configurazione. La tesi sviluppa strumenti di analisi delle prestazioni dei VTOL, studiando diversi sistemi di propulsione e le loro performance in scenari di missione (autonomia, range, payload...). La parte centrale dello studio riguarda la simulazione e la modellazione delle principali caratteristiche dinamiche: la fisica del volo, l’equilibrio e la stabilità, sono valutate attraverso due approcci differenti: analitico e numerico. Il primo approccio fornisce un modello semplificato, con un numero ridotto di gradi di libertà, adatto per studi preliminari di trim e stabilità. Sebbene questo approccio sia sufficiente per essere implementato in un simulatore fisico, le dinamiche del rotore e i loro effetti sulla stabilità del corpo rigido richiedono una metodologia di modellazione più avanzata. Viene quindi sviluppato un modello innovativo della dinamica del volo con 24 gradi di libertà per uno studio più approfondito delle caratteristiche del singolo rotore e degli effetti di accoppiamento con le dinamiche del corpo rigido. Un sistema di controllo d’assetto e di velocità è stato sviluppato per valutare le qualità di volo ed eseguire simulazioni in tempo reale software/hardware in the loop. L’analisi definisce le prestazioni di specifici VTOL ad ala rotante e discute le loro performance in termini di autonomia, potenza e carico utile. La selezione della configurazione di riferimento si basa sui risultati delle prestazioni, affiancati da una discussione qualitativa sui requisiti UAM. Lo studio del trim e della stabilità ha evidenziato la presenza di instabilità longitudinali legate alla configurazione e alla posizione del suo centro di gravità. Il confronto tra i due approcci ha mostrato come l’accuratezza della modellazione del rotore principale influenzi la previsione della stabilità del sistema, mentre il disaccoppiamento delle dinamiche del rotore consente di studiare gli effetti isolati del flappeggio, brandeggio e inflow. La tesi presenta l'elicottero side-by-side come una configurazione ottimale per i futuri servizi UAM, mettendo in evidenza le sue capacità prestazionali e dinamiche. La piattaforma di simulazione sviluppata in questo lavoro rappresenta uno strumento affidabile e riadattabile per lo studio di configurazioni VTOL alternative, per la progettazione avanzata di sistemi di controllo e simulazioni di volo in un ambiente sicuro e controllato.
Modellazione e simulazione di un elicottero side-by-side di piccola taglia per la mobilità aerea urbana
MAZZEO, FRANCESCO
2025
Abstract
Urban Air Mobility (UAM) is an advanced air transportation system for passengers and cargo emerging in the last few years with the aim of moving part of the urban transportation into the third dimension. The conceptualization of the UAM ecosystem has started in the last decade, focusing on the integration of different aircraft configurations in a mobility system around densely populated environments. Vertical Take-Off and Landing aircraft (VTOLs) are central to the UAM concept. The main requirement for an aerial vehicle to operate in a UAM ecosystem is to guarantee the capability of taking-off and landing within restricted areas. The means of transport has to be sustainable in terms of CO2 emissions and operate along specific routes with the aim of reducing urban traffic and travel time. To all of these extents, this work is inserted in the analysis of a specific VTOL configuration that can serve as a suitable candidate for future UAM services. The main goal of this work, is to select a rotorcraft configuration and carry out an in-depth analysis of its performance, trim, stability and flight dynamic properties, by developing innovative numerical tools that can be adapted for multiple layouts. Mostly focusing on rotary wing technologies, the thesis identifies in the side – by – side helicopter configuration the majority of the requirements fulfilled for providing aerial urban transportation in the near future. The original contribution to the scientific community is provided by the simulation platform created for studying performance and flight dynamic characteristics. The thesis provides a set of performance analysis tools, adopted for studying the capabilities of different propulsion systems and their performance along specific mission scenarios (endurance, range, payload…). The core section of the study is the simulation and modeling of the main dynamic features: flight physics, trim and stability and assessed with two different approaches, an analytical and a numerical one. The first one provides a simpler mathematical framework, with a reduced number of degrees of freedom, suitable for preliminary trim and stability studies. While this approach could be enough to be implemented in a physical simulator, specific rotor dynamics and their effects on rigid body stability requires an advanced modeling methodology. An original, numerical, flight dynamics model with 24 degrees of freedom has been developed for a deeper study of the single rotor characteristics and coupling effects with the rigid body modes. An attitude and velocity control system is developed in order to evaluate flying qualities and perform real time flight simulation in a software/hardware in the loop setup. The analysis provides fundamental insights on the performance of specific rotary – wing VTOLs and discusses on their endurance, power and payload capabilities. The selection of the reference configuration is based on the performance results coupled with a qualitative discussion on additional aspects concerning UAM requirements. The trim and stability analysis highlighted the presence of longitudinal instabilities linked to the specific configuration and the position of its center of gravity. The comparison between the two approaches showed how the accuracy of the main rotor modeling affects the prediction of the rigid body stability, while the decoupling of rotor dynamics allows for studying the isolated effects of blade flap, lead – lag and inflow. The manuscript presents the side – by – side helicopter as a viable candidate for future UAM services, highlighting its performance and dynamic capabilities. The simulation platform developed in this work represents a solid tool that can be adapted in the future for studying alternative VTOL configurations, perform advanced control system design and flight simulations in a secured and controlled environment.File | Dimensione | Formato | |
---|---|---|---|
Thesis - Mazzeo.pdf
accesso aperto
Dimensione
31.46 MB
Formato
Adobe PDF
|
31.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/197112
URN:NBN:IT:UNIMORE-197112