Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged over the past two decades as a highly promising technology for clean energy conversion, attracting significant attention in automotive and micro-cogeneration sectors. Their appeal lies in attributes such as high efficiency and power density, low emissions, relatively low operating temperatures (below 100 °C), rapid start-up capabilities, and modularity. These advantages position PEMFCs as key components in the transition toward sustainable energy systems. However, challenges persist, notably in water management, which critically impacts performance and durability by affecting membrane hydration and overall cell efficiency. This thesis presents a comprehensive study aimed at enhancing the understanding and modeling of PEM fuel cells and electrolyzers through detailed three-dimensional numerical simulations. The research begins with an in-depth examination of the state of the art in fuel cells, focusing on their components—such as the polymer electrolyte membrane, catalyst layers, gas diffusion layers, and bipolar plates—and the materials used in their construction. Understanding the roles and interactions of these components is crucial for identifying factors that influence performance and for guiding the development of effective modeling approaches. Building on this foundation, the study explores various modeling techniques applicable to the simulation of these devices, including multiphase models and electrochemical models. Multiphase models account for the simultaneous presence of gas and liquid phases within the cell, essential for accurately representing water/gas transport and distribution. Electrochemical models describe the reactions at the electrodes, incorporating kinetics, mass transport, and charge conservation principles. These models are vital for capturing the complex physical and chemical processes occurring within PEM fuel cells and electrolyzers. The core of the research involves applying selected modeling approaches to a single-channel PEM fuel cell case from existing literature. Three-dimensional Computational Fluid Dynamics (CFD) simulations are conducted, with results validated against experimental data to ensure accuracy and reliability. A key aspect investigated is the effect of porous media compression resulting from the assembly phase. Compression of the gas diffusion layers and catalyst layers during assembly alters their physical properties, such as porosity and permeability, affecting reactant distribution and overall cell performance. By incorporating strain correlations from the literature into the simulations, the study examines how mechanical deformation impacts the behavior of the porous media and, consequently, the fuel cell's efficiency. Extending the modeling approach, the research simulates a full cell of a PEM electrolyzer based on literature sources. Numerical results are compared with experimental findings from the original studies, providing deeper insights into the performance and modeling aspects of these devices. The simulations highlight critical factors affecting electrolyzer efficiency, such as gas evolution dynamics and mass transport limitations, enhancing our understanding of how to optimize these systems for hydrogen production. The insights gained can inform future efforts to optimize device performance, reduce costs, and promote the wider adoption of PEM technologies in the pursuit of global energy sustainability.
Le celle a combustibile a membrana ad elettrolita polimerico (PEMFC) sono emerse negli ultimi due decenni come una tecnologia promettente per la conversione di energia pulita, attirando notevole attenzione nei settori automobilistico e della microcogenerazione. Offrono alta efficienza e densità di potenza, basse emissioni, temperature operative relativamente basse (inferiori a 100 °C), avvio rapido e modularità. Questi vantaggi posizionano le PEMFC come componenti chiave nella transizione verso sistemi energetici sostenibili. Tuttavia, persistono sfide, in particolare nella gestione dell'acqua, che influisce criticamente sulle prestazioni e sulla durabilità influenzando l'idratazione della membrana e l'efficienza complessiva della cella. Questa tesi presenta uno studio mirato a migliorare la comprensione e la modellazione delle celle a combustibile e degli elettrolizzatori PEM attraverso simulazioni numeriche tridimensionali dettagliate. La ricerca inizia con un esame approfondito dello stato dell'arte delle celle a combustibile, focalizzandosi sui loro componenti—membrana a elettrolita polimerico, strati catalitici, strati diffusori di gas e piastre bipolari—e sui materiali utilizzati nella loro costruzione. Comprendere i ruoli e le interazioni di questi componenti è cruciale per identificare i fattori che influenzano le prestazioni e per sviluppare efficaci approcci modellistici. Lo studio esplora varie tecniche di modellazione applicabili alla simulazione di questi dispositivi, inclusi modelli multifase e modelli elettrochimici. I modelli multifase considerano la presenza simultanea di fasi gassose e liquide all'interno della cella, essenziali per rappresentare accuratamente il trasporto e la distribuzione di acqua e gas. I modelli elettrochimici descrivono le reazioni agli elettrodi, incorporando cinetiche, trasporto di massa e principi di conservazione della carica. Questi modelli sono fondamentali per catturare i complessi processi fisici e chimici che avvengono nelle celle a combustibile e negli elettrolizzatori PEM. Il nucleo della ricerca coinvolge l'applicazione di selezionati approcci modellistici a un caso di cella a combustibile PEM a singolo canale tratto dalla letteratura esistente. Sono state condotte simulazioni tridimensionali di fluidodinamica computazionale (CFD), con risultati validati rispetto a dati sperimentali per garantire accuratezza e affidabilità. Un aspetto chiave investigato è l'effetto della compressione dei mezzi porosi risultante dalla fase di assemblaggio. La compressione degli strati diffusivi di gas e degli strati catalitici durante l'assemblaggio modifica le loro proprietà fisiche, come porosità e permeabilità, influenzando la distribuzione dei reagenti e le prestazioni complessive della cella. Incorporando nelle simulazioni correlazioni di deformazione provenienti dalla letteratura, lo studio esamina come la deformazione meccanica impatti sull'efficienza della cella a combustibile. Estendendo l'approccio modellistico, la ricerca simula una cella completa di un elettrolizzatore PEM basata su fonti letterarie. I risultati numerici vengono confrontati con i dati sperimentali degli studi originali, offrendo approfondimenti sugli aspetti prestazionali e modellistici di questi dispositivi. Le simulazioni mettono in luce fattori critici che influenzano l'efficienza dell'elettrolizzatore, come la dinamica dell'evoluzione dei gas e le limitazioni nel trasporto di massa, migliorando la comprensione di come ottimizzare questi sistemi per la produzione di idrogeno. Le intuizioni acquisite possono essere fondamentali per ottimizzare le prestazioni dei dispositivi, ridurre i costi e promuovere una più ampia adozione delle tecnologie PEM nella ricerca di una sostenibilità energetica globale.
Modellazione CFD tridimensionale di celle a combustibile ed elettrolizzatori PEM.
Corda, Giuseppe
2025
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged over the past two decades as a highly promising technology for clean energy conversion, attracting significant attention in automotive and micro-cogeneration sectors. Their appeal lies in attributes such as high efficiency and power density, low emissions, relatively low operating temperatures (below 100 °C), rapid start-up capabilities, and modularity. These advantages position PEMFCs as key components in the transition toward sustainable energy systems. However, challenges persist, notably in water management, which critically impacts performance and durability by affecting membrane hydration and overall cell efficiency. This thesis presents a comprehensive study aimed at enhancing the understanding and modeling of PEM fuel cells and electrolyzers through detailed three-dimensional numerical simulations. The research begins with an in-depth examination of the state of the art in fuel cells, focusing on their components—such as the polymer electrolyte membrane, catalyst layers, gas diffusion layers, and bipolar plates—and the materials used in their construction. Understanding the roles and interactions of these components is crucial for identifying factors that influence performance and for guiding the development of effective modeling approaches. Building on this foundation, the study explores various modeling techniques applicable to the simulation of these devices, including multiphase models and electrochemical models. Multiphase models account for the simultaneous presence of gas and liquid phases within the cell, essential for accurately representing water/gas transport and distribution. Electrochemical models describe the reactions at the electrodes, incorporating kinetics, mass transport, and charge conservation principles. These models are vital for capturing the complex physical and chemical processes occurring within PEM fuel cells and electrolyzers. The core of the research involves applying selected modeling approaches to a single-channel PEM fuel cell case from existing literature. Three-dimensional Computational Fluid Dynamics (CFD) simulations are conducted, with results validated against experimental data to ensure accuracy and reliability. A key aspect investigated is the effect of porous media compression resulting from the assembly phase. Compression of the gas diffusion layers and catalyst layers during assembly alters their physical properties, such as porosity and permeability, affecting reactant distribution and overall cell performance. By incorporating strain correlations from the literature into the simulations, the study examines how mechanical deformation impacts the behavior of the porous media and, consequently, the fuel cell's efficiency. Extending the modeling approach, the research simulates a full cell of a PEM electrolyzer based on literature sources. Numerical results are compared with experimental findings from the original studies, providing deeper insights into the performance and modeling aspects of these devices. The simulations highlight critical factors affecting electrolyzer efficiency, such as gas evolution dynamics and mass transport limitations, enhancing our understanding of how to optimize these systems for hydrogen production. The insights gained can inform future efforts to optimize device performance, reduce costs, and promote the wider adoption of PEM technologies in the pursuit of global energy sustainability.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Giuseppe Corda.pdf
accesso aperto
Dimensione
6.13 MB
Formato
Adobe PDF
|
6.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/197113
URN:NBN:IT:UNIMORE-197113