The neurodegenerative diseases Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are characterized by the accumulation of cytoplasmic inclusion bodies enriched for the RNA binding protein Transactive response DNA binding protein 43 kDa (TDP-43). In healthy cells, TDP-43 is mainly found in the nucleus, where it regulates several aspects of RNA maturation. Nuclear depletion of TDP-43 and its aggregation in the cytoplasm are central to disease. Thus, understanding the mechanisms that promote TDP-43 aggregation may open new therapeutic opportunities for ALS and FTD. How cells control TDP-43 aggregation is only partially understood. One way to regulate protein stability and turnover is through post-translational modifications (PTMs). TDP-43 aggregates are ubiquitinated and phosphorylated and both modifications have been linked to protein aggregation, although recent studies showed that phosphorylation can suppress TDP-43 aggregation. Besides phosphorylation, TDP-43 can also be modified by acetylation and SUMOylation, which involves the conjugation of a substrate protein with either SUMO1 or SUMO2/3, via mono-, multi-mono or poly-SUMOylation. Conjugation of SUMO1 to TDP-43 was shown to influence its nuclear localization and splicing activity. In addition, upon stress conditions, TDP-43 can be conjugated to chains of SUMO2 and SUMO3 (referred to SUMO2/3). Yet, how SUMO2/3-ylation can influence TDP-43 stability and function upon stress conditions is still unclear. In this PhD thesis we focused on the understanding of whether/how conjugation of SUMO2/3 chains to TDP-43 may prevent its irreversible aggregation. We observed that upon oxidative stress global SUMO2/3-ylation is induced and many proteins, including TDP-43, are conjugated to SUMO2/3 chains. This event coincides with the formation of cytoplasmic condensates known as stress granules (SGs). SGs are dynamic compartments that form through a process of liquid-liquid phase separation (LLPS) and can recruit a number of RNAs and proteins, including TDP-43. Upon oxidative stress, the fraction of TDP-43 that is recruited inside SGs colocalizes with SUMO2/3. By Fluorescence recovery after photobleaching (FRAP) we found that TDP-43 conjugation to SUMO2/3 is important to prevent its immobilization inside SGs. Then, through sequential fractionation of soluble and insoluble proteins from whole cell lysates, we could show that inhibition of SUMOylation exacerbates the irreversible aggregation of TDP-43 upon oxidative stress conditions. Next, we performed a series of experiments in cells and in vitro that allowed us to identify a specific SUMO E3 ligase that preferentially conjugates SUMO2/3 to TDP-43. Finally, by mutating lysine residues to arginine residues (K/R), which cannot be conjugated to SUMO2/3, we identified the preferred SUMOylation sites in the TDP-43 protein, which corresponds to the RNA recognition motifs. By combining cellular data and in vitro experiments using increasing concentrations of RNA, we could show that conjugation of SUMO2/3 to TDP-43 is a back-up mechanism that cells activate to prevent the irreversible aggregation of RNA-free TDP-43 molecules. Enhancing TDP-43 SUMO2/3-ylation may represent a promising approach to prevent its aggregation and reduce misfolded TDP-43 mediated toxicity.
La demenza frontotemporale (FTD) e la sclerosi laterale amiotrofica (SLA) sono due malattie neurodegenerative caratterizzate dall'accumulo di corpi di inclusione citoplasmatici contenenti la ribonucleoproteina Transactive response DNA binding protein 43 kDa (TDP-43). Nelle cellule sane, TDP-43 si trova prevalentemente nel nucleo, dove regola diverse fasi della maturazione dell'RNA. Nelle cellule dei pazienti, invece, si osserva una deplezione nucleare di TDP-43 e la sua aggregazione nel citoplasma. Comprendere i meccanismi molecolari che promuovono l'aggregazione di TDP-43 è importante per identificare nuovi approcci terapeutici per combattere SLA e FTD. Ad oggi, non è ancora del tutto noto come le cellule limitino l'aggregazione di TDP-43. Stabilità e turnover delle proteine sono regolate attraverso modifiche post-traduzionali (PTM). Gli aggregati di TDP-43 sono ubiquitinati e fosforilati ed entrambe queste modificazioni sono state associate a specie tossiche, anche se studi recenti hanno dimostrato che la fosforilazione può sopprimere l'aggregazione di TDP-43. Oltre alla fosforilazione, TDP-43 può essere modificata mediante SUMOilazione. Quest’ultima comporta la coniugazione di una proteina substrato con SUMO1 o SUMO2/3, tramite mono-, multi-mono o poli-SUMOilazione. La coniugazione di TDP-43 con SUMO1 ne influenza la localizzazione e le attività di splicing. Tuttavia, in condizioni di stress, TDP-43 può essere coniugato a catene di SUMO2 e SUMO3 (SUMO2/3). Non è però ancora chiaro se la SUMO2/3-ilazione possa influenzare stabilità e funzione di TDP-43 in condizioni di stress. In questa tesi di dottorato ci siamo concentrati sullo studio di se e come la coniugazione di catene SUMO2/3 a TDP-43 possa prevenirne l’aggregazione irreversibile. Abbiamo osservato che, in risposta a stress ossidativo, molte proteine, tra cui TDP-43, sono modificate con catene di SUMO2/3. Questo evento coincide con la formazione di condensati citoplasmatici noti come granuli da stress. I granuli da stress sono strutture dinamiche che si formano attraverso un processo di separazione di fase liquido-liquido (LLPS) e reclutano RNA e proteine, tra cui anche TDP-43. In caso di stress ossidativo, la frazione di TDP-43 che viene reclutata all'interno dei granuli da stress colocalizza con SUMO2/3. Grazie ad esperimenti di FRAP (Fluorescence recovery after photobleaching) abbiamo osservato che la coniugazione di TDP-43 con SUMO2/3 è importante per prevenirne l’immobilizzazione all'interno dei granuli da stress. Attraverso tecniche di frazionamento di proteine cellulari solubili e insolubili, abbiamo scoperto che l’inibizione della SUMOilazione favorisce la formazione di aggregati irreversibili di TDP-43. Successivamente, abbiamo eseguito una serie di esperimenti in cellule e in vitro per identificare la SUMO E3 ligasi responsabile della coniugazione specifica di SUMO2/3 a TDP-43, la cui modulazione potrebbe fungere da futuro bersaglio terapeutico. Infine, mutando residui di lisina in arginina (K/R), i quali non possono essere coniugati con SUMO2/3, abbiamo identificato i siti nella proteina TDP-43 sui quali avviene preferenzialmente la SUMOilazione. Questi residui sono situati nei motivi di riconoscimento dell'RNA. Combinando dati cellulari ed esperimenti in vitro con concentrazioni crescenti di RNA, abbiamo dimostrato che la coniugazione di SUMO2/3 con TDP-43 è un meccanismo di difesa attivato dalle cellule per prevenire l'aggregazione irreversibile delle molecole di TDP-43 che non sono legate all’RNA. Dunque, approcci mirati al potenziamento della SUMO2/3-ilazione di TDP-43 possono rappresentare una strategia promettente per prevenire la sua aggregazione e ridurne la tossicità.
Meccanismi cellulari alla base del controllo dell'aggregazione di TDP-43 (Transactive response DNA binding protein 43 kDa): implicazioni per sclerosi laterale amiotrofica e demenza frontotemporale
VERDE, ENZA MARIA
2025
Abstract
The neurodegenerative diseases Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are characterized by the accumulation of cytoplasmic inclusion bodies enriched for the RNA binding protein Transactive response DNA binding protein 43 kDa (TDP-43). In healthy cells, TDP-43 is mainly found in the nucleus, where it regulates several aspects of RNA maturation. Nuclear depletion of TDP-43 and its aggregation in the cytoplasm are central to disease. Thus, understanding the mechanisms that promote TDP-43 aggregation may open new therapeutic opportunities for ALS and FTD. How cells control TDP-43 aggregation is only partially understood. One way to regulate protein stability and turnover is through post-translational modifications (PTMs). TDP-43 aggregates are ubiquitinated and phosphorylated and both modifications have been linked to protein aggregation, although recent studies showed that phosphorylation can suppress TDP-43 aggregation. Besides phosphorylation, TDP-43 can also be modified by acetylation and SUMOylation, which involves the conjugation of a substrate protein with either SUMO1 or SUMO2/3, via mono-, multi-mono or poly-SUMOylation. Conjugation of SUMO1 to TDP-43 was shown to influence its nuclear localization and splicing activity. In addition, upon stress conditions, TDP-43 can be conjugated to chains of SUMO2 and SUMO3 (referred to SUMO2/3). Yet, how SUMO2/3-ylation can influence TDP-43 stability and function upon stress conditions is still unclear. In this PhD thesis we focused on the understanding of whether/how conjugation of SUMO2/3 chains to TDP-43 may prevent its irreversible aggregation. We observed that upon oxidative stress global SUMO2/3-ylation is induced and many proteins, including TDP-43, are conjugated to SUMO2/3 chains. This event coincides with the formation of cytoplasmic condensates known as stress granules (SGs). SGs are dynamic compartments that form through a process of liquid-liquid phase separation (LLPS) and can recruit a number of RNAs and proteins, including TDP-43. Upon oxidative stress, the fraction of TDP-43 that is recruited inside SGs colocalizes with SUMO2/3. By Fluorescence recovery after photobleaching (FRAP) we found that TDP-43 conjugation to SUMO2/3 is important to prevent its immobilization inside SGs. Then, through sequential fractionation of soluble and insoluble proteins from whole cell lysates, we could show that inhibition of SUMOylation exacerbates the irreversible aggregation of TDP-43 upon oxidative stress conditions. Next, we performed a series of experiments in cells and in vitro that allowed us to identify a specific SUMO E3 ligase that preferentially conjugates SUMO2/3 to TDP-43. Finally, by mutating lysine residues to arginine residues (K/R), which cannot be conjugated to SUMO2/3, we identified the preferred SUMOylation sites in the TDP-43 protein, which corresponds to the RNA recognition motifs. By combining cellular data and in vitro experiments using increasing concentrations of RNA, we could show that conjugation of SUMO2/3 to TDP-43 is a back-up mechanism that cells activate to prevent the irreversible aggregation of RNA-free TDP-43 molecules. Enhancing TDP-43 SUMO2/3-ylation may represent a promising approach to prevent its aggregation and reduce misfolded TDP-43 mediated toxicity.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_EnzaMariaVerde.pdf
embargo fino al 18/03/2028
Dimensione
4.67 MB
Formato
Adobe PDF
|
4.67 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/197577
URN:NBN:IT:UNIMORE-197577