Lithium ion batteries are a key technology in the energy transition. Two approaches, self-healing and scavenger, were implemented with the objective of ensuring enhanced performance, safety, and longevity for next-generation batteries. The self-healing technology was applied in a gel polymer electrolyte and a quasi-solid polymer electrolyte, wherein the repair unit was the ureido-pyrimidone group, whose self-healing action is based on a quadrupole hydrogen bond. Both the electrolytes demonstrated the capacity to repair mechanical damage within a few hours and exhibited enhanced electrochemical performance compared to conventional liquid systems. With regard to scavenger technology, research was conducted on the neutralization of HF and H₂O, harmful species that cause the dissolution of transition metal ions from the cathode. For HF, chitosan-functionalized Al2O3 nanoparticles were synthetized cause they are capable of reacting directly with HF, neutralizing it, while the chitosan can coordinate the dissolved metals, trapping them. A copper-based MOF acting as a molecular sieve was used for H2O. The use of these scavengers in cells resulted in notable enhancements in electrochemical performance and a reduction in metal dissolution.

Tecnologia chiave per la transizione energetica sono le batterie a ioni litio. Si sono applicati due approcci, self-healing e scavenger, per garantire alle batterie di prossima generazione prestazioni, sicurezza e longevità sempre migliori. La tecnologia self-healing è impiegata in elettroliti polimerici, uno gel e uno quasi-solido, in cui l’unità riparante è il gruppo ureido-pyrimidone, che compie l’azione di riparazione mediante la formazione di un legame idrogeno quadruplo. Entrambi gli elettroliti manifestano la capacità di riparare danni meccanici in poche ore e di migliorare le prestazioni elettrochimiche rispetto ai sistemi liquidi convenzionali. Per la tecnologia scavenger si è lavorato sulla neutralizzazione di HF e H2O che portano alla dissoluzione degli ioni metallici dal catodo. Per HF si sono sviluppate nanoparticelle di Al2O3 funzionalizzate con chitosano capaciti di reagire direttamente con HF, neutralizzandolo, mentre il chitosano può coordinare i metalli dissolti, intrappolandoli. Per H2O è impiegato un MOF a base di rame che agisce come setaccio molecolare. Con questi scavenger si ottengono importanti miglioramenti nelle prestazioni elettrochimiche e nella riduzione della dissoluzione dei metalli.

Design of Neutral Chemistry Approaches for Li-ion and beyond Lithium Batteries of the Future

DAVINO, STEFANIA
2025

Abstract

Lithium ion batteries are a key technology in the energy transition. Two approaches, self-healing and scavenger, were implemented with the objective of ensuring enhanced performance, safety, and longevity for next-generation batteries. The self-healing technology was applied in a gel polymer electrolyte and a quasi-solid polymer electrolyte, wherein the repair unit was the ureido-pyrimidone group, whose self-healing action is based on a quadrupole hydrogen bond. Both the electrolytes demonstrated the capacity to repair mechanical damage within a few hours and exhibited enhanced electrochemical performance compared to conventional liquid systems. With regard to scavenger technology, research was conducted on the neutralization of HF and H₂O, harmful species that cause the dissolution of transition metal ions from the cathode. For HF, chitosan-functionalized Al2O3 nanoparticles were synthetized cause they are capable of reacting directly with HF, neutralizing it, while the chitosan can coordinate the dissolved metals, trapping them. A copper-based MOF acting as a molecular sieve was used for H2O. The use of these scavengers in cells resulted in notable enhancements in electrochemical performance and a reduction in metal dissolution.
28-mar-2025
Inglese
Tecnologia chiave per la transizione energetica sono le batterie a ioni litio. Si sono applicati due approcci, self-healing e scavenger, per garantire alle batterie di prossima generazione prestazioni, sicurezza e longevità sempre migliori. La tecnologia self-healing è impiegata in elettroliti polimerici, uno gel e uno quasi-solido, in cui l’unità riparante è il gruppo ureido-pyrimidone, che compie l’azione di riparazione mediante la formazione di un legame idrogeno quadruplo. Entrambi gli elettroliti manifestano la capacità di riparare danni meccanici in poche ore e di migliorare le prestazioni elettrochimiche rispetto ai sistemi liquidi convenzionali. Per la tecnologia scavenger si è lavorato sulla neutralizzazione di HF e H2O che portano alla dissoluzione degli ioni metallici dal catodo. Per HF si sono sviluppate nanoparticelle di Al2O3 funzionalizzate con chitosano capaciti di reagire direttamente con HF, neutralizzandolo, mentre il chitosano può coordinare i metalli dissolti, intrappolandoli. Per H2O è impiegato un MOF a base di rame che agisce come setaccio molecolare. Con questi scavenger si ottengono importanti miglioramenti nelle prestazioni elettrochimiche e nella riduzione della dissoluzione dei metalli.
COLOMBO, GIORGIO
Università degli studi di Pavia
File in questo prodotto:
File Dimensione Formato  
Davino_Stefania_PhDThesis.pdf

accesso aperto

Dimensione 19.39 MB
Formato Adobe PDF
19.39 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/197644
Il codice NBN di questa tesi è URN:NBN:IT:UNIPV-197644