The ever-increasing global population puts great pressure on soil and water resources, requiring a balance between traditional methods and technological innovation to meet market demands and manage environmental impact. In this frame the monitoring of environmentally relevant pollutants is important and the use of biosystems has received increased interest. The main goal of this research project was to design and develop biosensors based on yeast cells for applications in precision agriculture. Precision agriculture is defined as a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. Yeast-based biosensors have been shown to be low-cost, sensitive and economically viable solutions for preliminary assessment of pollutants, although only a few prototypes were tested for real applications. Here we describe the design and development of an electrochemical biosensor based on Saccharomyces cerevisiae yeast cells for monitoring copper in environmental samples. A protocol was set up for the rapid entrapment of wild type yeast cells in a biocompatible polydopamine layer and the use of a glass carbon electrode for current measurements. Our data showed that the bioelectrode generated current from glucose oxidation and was resistant to more than 90 min of desiccation exposed to air. Additionally, the electrochemical performance of the biohybrid yeast-based system has been characterized in the presence of CuSO4, a widely used pesticide, in the environmentally relevant concentration range of 20-100 μM. The system enabled the rapid preliminary monitoring of the contaminant based on variations in current generation, with a limit of detection of 12.5 μM CuSO4. The short-term current output of wild type S. cerevisiae cells was evaluated also in the presence of different carbon sources (glucose, glycerol and ethanol) and the redox mediator K3[Fe(CN)6]. In addition, two yeast mutant strains, lacking HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins, and RTG2, encoding a positive regulator of mitochondria-to-nucleus communication, were analyzed. Results showed that current output increased in the presence of both the redox mediator and the non-fermentative substrates, glycerol and ethanol, as well as in cells with dysfunctional mitochondria. Notably, these last experiments have been performed with a disposable screen printed electrode, which favored the transition from the laboratory proof of concept to the prototype. The prototype was then developed and an online web resource was designed for online retrieval and data analyses. Studies have been performed to assess the stability and the metabolic activity of yeast cells immobilized in the matrix. Our data showed that the cells remained viable up to 60 days at 4 ºC and were metabolically active. Particularly, glucose consumption and glycerol production, were faster in immobilized cells compared to free cells. While ethanol production was faster when sodium alginate was used as a matrix compared to free cells and agarose immobilized cells. Lastly, a novel and user-friendly MATLAB application was developed for the quantitative assessment of yeast cell growth and survival on solid media. This application is a suitable technique in studying biochemical, genetic and physiological processes in the cells. The developed software includes a protocol for yeast cell visualization, and it is easy to install, user friendly and has shorter analysis steps compared to other analytical methods. Overall, the results reported in this thesis provide a sustainable approach for environmental monitoring and pave the way for the future development of specific yeast-based biosensors to be used in real-world applications.
La popolazione mondiale in costante aumento esercita una forte pressione sulle risorse idriche e del suolo, richiedendo un equilibrio tra metodi tradizionali e innovazione tecnologica per soddisfare le richieste del mercato e gestire l'impatto ambientale. In questo contesto, il monitoraggio degli inquinanti rilevanti per l'ambiente è importante e l'uso dei biosistemi ha ricevuto un crescente interesse. L'obiettivo principale di questo progetto di ricerca è stato quello di progettare e sviluppare biosensori basati su cellule di lievito per applicazioni nell'agricoltura di precisione. L'agricoltura di precisione è definita come una strategia di gestione agricola basata sull'osservazione, la misurazione e la risposta alla variabilità temporale e spaziale per migliorare la sostenibilità della produzione agricola. I biosensori a base di lievito hanno dimostrato di essere una soluzione a basso costo, sensibile ed economicamente valida per la valutazione preliminare degli inquinanti, sebbene solo pochi prototipi siano stati testati per applicazioni reali. Qui descriviamo la progettazione e lo sviluppo di un biosensore elettrochimico basato su cellule di lievito Saccharomyces cerevisiae per il monitoraggio del rame in campioni ambientali. È stato messo a punto un protocollo per l'intrappolamento rapido di cellule di lievito di tipo selvatico in uno strato di polidopamina biocompatibile e l'uso di un elettrodo di vetro-carbone per le misure di corrente. I nostri dati hanno dimostrato che il bioelettrodo ha generato corrente dall'ossidazione del glucosio ed è stato resistente a più di 90 minuti di essiccazione esposto all'aria. Inoltre, le prestazioni elettrochimiche del sistema bioibrido a base di lievito sono state caratterizzate in presenza di CuSO4, un pesticida ampiamente utilizzato, in un intervallo di concentrazione rilevante per l'ambiente di 20-100 μM. Il sistema ha consentito un rapido monitoraggio preliminare del contaminante in base alle variazioni della generazione di corrente, con un limite di rilevamento di 12,5 μM CuSO4. La produzione di corrente a breve termine delle cellule di S. cerevisiae di tipo selvatico è stata valutata anche in presenza di diverse fonti di carbonio (glucosio, glicerolo ed etanolo) e del mediatore redox K3[Fe(CN)6]. Inoltre, sono stati analizzati due ceppi mutanti di lievito privi di HAP4, che codifica la subunità catalitica del complesso Hap2-5 necessario per l'espressione di molte proteine mitocondriali, e di RTG2, che codifica un regolatore positivo della comunicazione mitocondrio-nucleo. I risultati hanno mostrato che la produzione di corrente aumenta in presenza del mediatore redox e dei substrati non fermentativi, glicerolo ed etanolo, nonché in cellule con mitocondri disfunzionali. In particolare, questi ultimi esperimenti sono stati eseguiti con un elettrodo serigrafato monouso, che ha favorito il passaggio dalla prova di laboratorio al prototipo. Il prototipo è stato poi sviluppato ed è stata progettata una risorsa web online per il reperimento e l'analisi dei dati. Sono stati eseguiti studi per valutare la stabilità e l'attività metabolica delle cellule di lievito immobilizzate nella matrice. I nostri dati hanno dimostrato che le cellule sono rimaste vitali fino a 60 giorni a 4 ºC ed erano metabolicamente attive. In particolare, il consumo di glucosio e la produzione di glicerolo sono stati più rapidi nelle cellule immobilizzate rispetto a quelle libere. Mentre la produzione di etanolo è stata più rapida quando è stato utilizzato l'alginato di sodio come matrice rispetto alle cellule libere e alle cellule immobilizzate con agarosio. Infine, è stata sviluppata un'applicazione Matlab innovativa e di facile utilizzo per la valutazione quantitativa della crescita e della sopravvivenza delle cellule di lievito su terreni solidi. Questa applicazione è una tecnica adatta allo studio dei processi biochimici, genetici e fisiologici nelle cellule...
CHARACTERIZATION OF Saccharomyces cerevisiae AS A BIOREPORTER IN THE DESIGN AND DEVELOPMENT OF YEAST-BASED BIOSENSORS FOR APPLICATIONS IN ENVIRONMENTAL MONITORING
OCHEJA, OHIEMI BENJAMIN
2024
Abstract
The ever-increasing global population puts great pressure on soil and water resources, requiring a balance between traditional methods and technological innovation to meet market demands and manage environmental impact. In this frame the monitoring of environmentally relevant pollutants is important and the use of biosystems has received increased interest. The main goal of this research project was to design and develop biosensors based on yeast cells for applications in precision agriculture. Precision agriculture is defined as a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. Yeast-based biosensors have been shown to be low-cost, sensitive and economically viable solutions for preliminary assessment of pollutants, although only a few prototypes were tested for real applications. Here we describe the design and development of an electrochemical biosensor based on Saccharomyces cerevisiae yeast cells for monitoring copper in environmental samples. A protocol was set up for the rapid entrapment of wild type yeast cells in a biocompatible polydopamine layer and the use of a glass carbon electrode for current measurements. Our data showed that the bioelectrode generated current from glucose oxidation and was resistant to more than 90 min of desiccation exposed to air. Additionally, the electrochemical performance of the biohybrid yeast-based system has been characterized in the presence of CuSO4, a widely used pesticide, in the environmentally relevant concentration range of 20-100 μM. The system enabled the rapid preliminary monitoring of the contaminant based on variations in current generation, with a limit of detection of 12.5 μM CuSO4. The short-term current output of wild type S. cerevisiae cells was evaluated also in the presence of different carbon sources (glucose, glycerol and ethanol) and the redox mediator K3[Fe(CN)6]. In addition, two yeast mutant strains, lacking HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins, and RTG2, encoding a positive regulator of mitochondria-to-nucleus communication, were analyzed. Results showed that current output increased in the presence of both the redox mediator and the non-fermentative substrates, glycerol and ethanol, as well as in cells with dysfunctional mitochondria. Notably, these last experiments have been performed with a disposable screen printed electrode, which favored the transition from the laboratory proof of concept to the prototype. The prototype was then developed and an online web resource was designed for online retrieval and data analyses. Studies have been performed to assess the stability and the metabolic activity of yeast cells immobilized in the matrix. Our data showed that the cells remained viable up to 60 days at 4 ºC and were metabolically active. Particularly, glucose consumption and glycerol production, were faster in immobilized cells compared to free cells. While ethanol production was faster when sodium alginate was used as a matrix compared to free cells and agarose immobilized cells. Lastly, a novel and user-friendly MATLAB application was developed for the quantitative assessment of yeast cell growth and survival on solid media. This application is a suitable technique in studying biochemical, genetic and physiological processes in the cells. The developed software includes a protocol for yeast cell visualization, and it is easy to install, user friendly and has shorter analysis steps compared to other analytical methods. Overall, the results reported in this thesis provide a sustainable approach for environmental monitoring and pave the way for the future development of specific yeast-based biosensors to be used in real-world applications.File | Dimensione | Formato | |
---|---|---|---|
CHARACTERIZATION OF Saccharomyces cerevisiae AS A BIOREPORTER IN THE DESIGN AND DEVELOPMENT OF YEAST-BASED BIOSENSORS FOR APPLICATIONS IN ENVIRONMENTAL MONITORING_Ohiemi Benjamin Ocheja_Thesis Final Version.pdf
embargo fino al 12/11/2025
Dimensione
9.4 MB
Formato
Adobe PDF
|
9.4 MB | Adobe PDF | |
CHARACTERIZATION OF Saccharomyces cerevisiae AS A BIOREPORTER IN THE DESIGN AND DEVELOPMENT OF YEAST-BASED BIOSENSORS FOR APPLICATIONS IN ENVIRONMENTAL MONITORING_Ohiemi Benjamin Ocheja_Thesis Final Version_1.pdf
embargo fino al 12/11/2025
Dimensione
9.4 MB
Formato
Adobe PDF
|
9.4 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/197738
URN:NBN:IT:UNIBA-197738