In this thesis the problem of a hydraulic fracture in the plane is studied as a problem coupling elasticity and lubrication equations. In the first part of the thesis the formulation as a differential equation is introduced, showing all the steps and hypotheses to obtain the model problem. The elasticity equation is then written as a Boundary Integral Equation using the analytical knowledge of the fundamental solution of the differential operator and the use of a representation formula that expresses the solution of the problem through integrals defined on the surface of the spatial domain. After introducing the weak formulation, the equation is discretized using the Boundary Element Method. The lubrication equation, after introducing its weak formulation, is approximated through the application of the Finite Element Method. The equations that regulate the movement of the fronts of the spatial domains of the two equations are then introduced. The one for the fluid domain front is obtained directly from the mass balance equation while the one for the fracture domain front is based on a viscous regularization of the fracture propagation problem. An in-depth analysis is aimed at the quadrature formulas used for the numerical evaluation of the singular integrals of the matrix resulting from the discretization using boundary elements. Particular shape functions to be used in the mesh elements that contain the fracture fronts are also analyzed in order to evaluate, through a closed formula, the Stress Intensity Factors. A numerical study on the classical fracture problem in a linear elastic medium shows the correctness and efficiency of these implemented techniques. Part of the thesis is dedicated to study stability estimates: theoretical results obtained starting from a problem involving a simpler equation are shown, both when the fronts are considered fixed and when they can move. The last part of the thesis is devoted to show the numerical results of the coupled problem: it is shown how the crack opening evolves over time and how the pressure intensity varies. A study is conducted on the convergence of the energy norm and L2 norm of the fracture opening. Finally, possible future developments and open problems are presented.
In questa tesi viene studiato il problema di una frattura idraulica nel piano come un problema di accoppiamento dell’equazione dell’elasticità e di lubricazione. Nella prima parte della tesi viene introdotta la formulazione come un’equazione differenziale, mostrando tutti i passaggi e le ipotesi per ottenere il problema modello. L’equazione dell’elasticità viene quindi scritta come Equazione Integrale di Contorno ottenuta grazie alla conoscenza ana litica della soluzione fondamentale dell’operatore differenziale e all’uso di una formula di rappresentazione che esprime la soluzione del problema attraverso integrali definiti sulla superficie del dominio spaziale del problema. Dopo aver introdotto la formulazione debole, l’equazione viene discretizzata utilizzando il Metodo degli Elementi al Contorno. L’equazione di lubricazione invece, dopo averne introdotto la formulazione debole, viene approssimata attraverso l’applicazione del Metodo degli Elementi Finiti. Vengono poi introdotte le equazioni che regolano il movimento dei fronti dei domini spaziali delle due equazioni. Quella per il fronte del dominio del fluido si ottiene direttamente dall’equazione di bilancio della massa mentre quella per il fronte del dominio della frattura si basa su una regolarizzazione viscosa del problema di propagazione delle fratture. Un’analisi approfondita `e rivolta alle formule di quadratura utilizzate per il calcolo numerico degli integrali singolari della matrice proveniente dalla discretizzazione usando la tecnica degli elementi al contorno. Vengono inoltre analizzate delle particolari funzioni di forma da utilizzare negli elementi della mesh che contengono i fronti della frattura per poter calcolare, attraverso una formula chiusa, i Fattori di Intensità dello Stress. Uno studio numerico sul problema classico di frattura in campo elastico lineare mostra la correttezza e l’efficienza delle tecniche implementate. Parte della tesi ` e dedicata ad uno studio sulle stime di stabilità del problema: vengono mostrati i risultati ottenuti partendo da un problema relativo a un’equazione pi` u semplice, sia quando i fronti sono considerati fissi sia quando si possono muovere. L’ultima parte della tesi `e dedicata a mostrare i risultati numerici del problema accoppiato: viene mostrato come si evolve nel tempo l’apertura della frattura e come varia l’intensità della pressione. Viene condotto uno studio sulla convergenza della norma energetica e della norma L2 dell’apertura della frattura. Infine vengono presentati i possibili sviluppi futuri e i problemi aperti.
Coupling of Boundary Elements and Finite Elements for 2D hydraulic fracture problems
Curati, Nicolò
2025
Abstract
In this thesis the problem of a hydraulic fracture in the plane is studied as a problem coupling elasticity and lubrication equations. In the first part of the thesis the formulation as a differential equation is introduced, showing all the steps and hypotheses to obtain the model problem. The elasticity equation is then written as a Boundary Integral Equation using the analytical knowledge of the fundamental solution of the differential operator and the use of a representation formula that expresses the solution of the problem through integrals defined on the surface of the spatial domain. After introducing the weak formulation, the equation is discretized using the Boundary Element Method. The lubrication equation, after introducing its weak formulation, is approximated through the application of the Finite Element Method. The equations that regulate the movement of the fronts of the spatial domains of the two equations are then introduced. The one for the fluid domain front is obtained directly from the mass balance equation while the one for the fracture domain front is based on a viscous regularization of the fracture propagation problem. An in-depth analysis is aimed at the quadrature formulas used for the numerical evaluation of the singular integrals of the matrix resulting from the discretization using boundary elements. Particular shape functions to be used in the mesh elements that contain the fracture fronts are also analyzed in order to evaluate, through a closed formula, the Stress Intensity Factors. A numerical study on the classical fracture problem in a linear elastic medium shows the correctness and efficiency of these implemented techniques. Part of the thesis is dedicated to study stability estimates: theoretical results obtained starting from a problem involving a simpler equation are shown, both when the fronts are considered fixed and when they can move. The last part of the thesis is devoted to show the numerical results of the coupled problem: it is shown how the crack opening evolves over time and how the pressure intensity varies. A study is conducted on the convergence of the energy norm and L2 norm of the fracture opening. Finally, possible future developments and open problems are presented.File | Dimensione | Formato | |
---|---|---|---|
PhD_thesis_Curati.pdf
accesso aperto
Dimensione
5.77 MB
Formato
Adobe PDF
|
5.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/199644
URN:NBN:IT:UNIBS-199644