The aim of this thesis is to explore the benefits of the Current Source Inverter (CSI) and analyse the challenges along with potential solutions for its application in motor drives. The importance of the power electronic converters is well known in industry and automo tive sectors. Although CSIs have traditionally been used in high-power applications, nowadays there is a growing interest in employing them in areas where Voltage Source Inverters (VSIs) are typically dominant, especially after the advent of Wide-Bandgap (WBG) bidirectional switches. Indeed, CSIs offer several advantages over VSIs, including smoother filtered out put voltages, reduced Electromagnetic Interference (EMI), higher reliability, fault tolerance, and greater robustness in challenging conditions such as vibration, humidity, temperature fluctuations, and ageing. In motor drive applications, CSIs are typically employed when the electric motor operates at medium to high speeds and the DC input voltage is limited, as seen in fans, compressors, air blowers, or microturbine generators. A second stage with an output inductor is required between the voltage supply and the CSI, to regulate the input current of the converter. However, in literature exists also a control strategy which allows controlling the input current of the CSI with only one stage, referred to as Single-Stage CSI (SS-CSI), which exploits the boost capability of the CSI. The first aim of this thesis is to prove the reduced power losses of the SS-CSI, by comparing it and the CSI with Pre-Stage (PS-CSI), through PLECS simulations. Due to its intrinsic boost capability, the SS-CSI cannot effectively control the input current at low speeds, specifically when the Back-Electromotive Force (BEMF) is lower than the supply voltage. In this thesis, a new SS-CSI topology is proposed, addressing this low-speed limitation through the integration of a coupled inductor and an energy recovery path. The proposed topology is referred to as Single-Stage CSI with Discharge Path (SS-CSI-DP). The SS-CSI-DP not only extends the operating range of the SS-CSIs, but also keeps the greater efficiency of the SS-CSIs compared to PS-CSIs, especially in applications where the motor predominantly operates at high speeds. A dedicated control strategy is developed for the SS CSI-DP and used for validation through both PLECS simulations and experimental testing. Finally, a Space Vector Modulation (SVM) pattern is developed to optimise the Total Harmonic Distortion (THD) at low speeds, and a dedicated alignment procedure is proposed.
L'obiettivo di questa tesi è esplorare i benefici del Current Source Inverter (CSI) e analizzare le sfide e le possibili soluzioni per la sua applicazione negli azionamenti elettrici. L'importanza dei convertitori elettronici di potenza è ben nota nei settori industriali e automobilistici. Sebbene i CSI siano stati tradizionalmente utilizzati in applicazioni ad alta potenza, al giorno d'oggi c'è un crescente interesse per il loro impiego in aree dove i Voltage Source Inverter (VSI) sono tipicamente dominanti, specialmente dopo l'avvento degli switch Wide Bandgap (WBG). Infatti, i CSI offrono diversi vantaggi rispetto ai VSI, tra cui tensioni di uscita filtrate, una ridotta interferenza elettromagnetica (EMI), maggiore affidabilità, tolleranza ai guasti e maggiore robustezza in condizioni difficili come vibrazioni, umidità, fluttuazioni di temperatura e invecchiamento. Negli azionamenti elettrici, i CSI sono generalmente impiegati quando il motore elettrico opera a velocità medie o alte, e la tensione di ingresso è limitata, come nel caso di ventole, compressori, aeratori o microturbine. Un secondo stadio con un induttore di uscita è necessario, tra l'alimentazione in tensione e il CSI, per regolare la corrente di ingresso del convertitore. Tuttavia, in letteratura esiste anche una strategia di controllo che consente di controllare la corrente di ingresso di un CSI con un solo stadio, Single-Stage CSI (SS-CSI), sfruttando la capacità di boost del CSI. Il primo obiettivo di questo lavoro è dimostrare che le dissipazioni del SS-CSI sono minori di quelle del più tradizionale CSI con pre-stadio (PS-CSI). Il confronto è stato fatto utilizzando simulazioni in PLECS. A causa della sua intrinseca capacità di boost, il SS-CSI non può controllare la corrente di ingresso a basse velocità, poiché la forza controelettromotrice (BEMF) è inferiore alla tensione di alimentazione. In questa tesi, viene proposta una nuova topologia di CSI a singolo stadio, che affronta questa limitazione a basse velocità attraverso l'integrazione di un induttore accoppiato e di un percorso di recupero energetico. La topologia proposta è stata chiamata Single-Stage CSI con Discharge Path (SS-CSI-DP). Il SS-CSI-DP non solo estende il campo operativo del SS-CSI, ma mantiene anche l'efficienza maggiore rispetto ai PS-CSI, nelle applicazioni in cui il motore opera prevalentemente ad alte velocità. La topologia proposta è validata sia tramite simulazioni in PLECS che attraverso test sperimentali. In fine, viene presentato un pattern di modulazione per Space Vector Modulation (SVM), che minimizza la Total Harmonic Distortion (THD) a basse velocità, e una procedura di allineamento.
Analisi e implementazione di una nuova topologia di CSI a singolo stadio con range di velocità esteso e maggiore efficienza
BENATTI, DARIO
2025
Abstract
The aim of this thesis is to explore the benefits of the Current Source Inverter (CSI) and analyse the challenges along with potential solutions for its application in motor drives. The importance of the power electronic converters is well known in industry and automo tive sectors. Although CSIs have traditionally been used in high-power applications, nowadays there is a growing interest in employing them in areas where Voltage Source Inverters (VSIs) are typically dominant, especially after the advent of Wide-Bandgap (WBG) bidirectional switches. Indeed, CSIs offer several advantages over VSIs, including smoother filtered out put voltages, reduced Electromagnetic Interference (EMI), higher reliability, fault tolerance, and greater robustness in challenging conditions such as vibration, humidity, temperature fluctuations, and ageing. In motor drive applications, CSIs are typically employed when the electric motor operates at medium to high speeds and the DC input voltage is limited, as seen in fans, compressors, air blowers, or microturbine generators. A second stage with an output inductor is required between the voltage supply and the CSI, to regulate the input current of the converter. However, in literature exists also a control strategy which allows controlling the input current of the CSI with only one stage, referred to as Single-Stage CSI (SS-CSI), which exploits the boost capability of the CSI. The first aim of this thesis is to prove the reduced power losses of the SS-CSI, by comparing it and the CSI with Pre-Stage (PS-CSI), through PLECS simulations. Due to its intrinsic boost capability, the SS-CSI cannot effectively control the input current at low speeds, specifically when the Back-Electromotive Force (BEMF) is lower than the supply voltage. In this thesis, a new SS-CSI topology is proposed, addressing this low-speed limitation through the integration of a coupled inductor and an energy recovery path. The proposed topology is referred to as Single-Stage CSI with Discharge Path (SS-CSI-DP). The SS-CSI-DP not only extends the operating range of the SS-CSIs, but also keeps the greater efficiency of the SS-CSIs compared to PS-CSIs, especially in applications where the motor predominantly operates at high speeds. A dedicated control strategy is developed for the SS CSI-DP and used for validation through both PLECS simulations and experimental testing. Finally, a Space Vector Modulation (SVM) pattern is developed to optimise the Total Harmonic Distortion (THD) at low speeds, and a dedicated alignment procedure is proposed.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis - Dario Benatti.pdf
embargo fino al 26/03/2028
Dimensione
11.5 MB
Formato
Adobe PDF
|
11.5 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202077
URN:NBN:IT:UNIMORE-202077