The objective of the present thesis is the investigation and development of numerical methodologies for performance prediction and specific physical phenomena investigation to be applied to systems and technologies characterized by multiphase condition in various engineering sectors of interest, from high duty machines to gas treatment sectors. The use of numerical modelling is an extremely valuable tool can be particularly useful to investigate whereas experimental investigation may encounter technical issues, due to the complexity of the system or simply the practical difficulty for the investigation to be performed. The aim of the research work is based on the application of numerical modelling to help industries to apply useful changes to improve the efficiency and the reliability of their technologies with a fully functional tool based on an ad-hoc methodology to be properly designed to meet with the nowadays requirements of reliability and timings. The computational fluid dynamic (CFD) is the technique mainly implemented during the present research work, along with a similar technique based on different theoretical backgrounds. The CFD makes use of the Navier-Stokes equations and with the use of additional models it permits the precise analysis of technologies characterized by phenomena like turbulence, condensation and energy exchange. The model which was the main protagonist is the VOF, a multiphase model that considers the phases as immiscible one into the other. Eventual limits of the CFD may be overcome with the use of a lagrangian particle method that is the Smoothed Particle Hydrodynamics (SPH). In this case the known difficulties of CFD, like dynamic zero point contacts, are resolved net of a lesser precision but with an higher calculation speed. In the present thesis work various industrial technologies of engineering interest have been analyzed, with both the afore-mentioned methods being applied. A first study case was the analysis of the thermal dissipation performance of an agricultural tractor braking system. In this case, starting from a methodology created ad-hoc to divide the fluid volume in an optimal manner, along with the mesh grid generation on each single interfaced sub-volume, the braking event was simulated starting from a reference failure test, with means of the main operative parameters. Those were in the form of the discs’ rotation velocity and dissipated thermal energy. After that a 21 cases matrix based on permutations of the different parameters and a different oil inlet channels investigation were realized to value the efficiency of the brake. After that an industrial condenser for exhaust acid gasses was analyzed firstly characterizing the fluxes of gas and liquid. After that a simplified infinite tube model, based on the first vertical section of one of the cold tubes, the wall condensation was investigated. The elaborated model considers the coupling of various models with the VOF and demonstrated the necessity of implementing also the thermal driven condensation. On the second kind of analysis, the SPH was applied to the oil-air mixing in an automotive differential, where the dynamic contact between the teeth of the gears would make the use of the CFD impassable. The analysis then was conducted considering variations like the volume of oil and the orientation of the gears’ teeth to value the impact on the working performances of the machine.
Obiettivo della presente tesi è l’investigazione e sviluppo di metodologie numeriche per la predizione della performance e investigazione di specifici fenomeni fisici per applicazione a sistemi e tecnologie caratterizzate da condizione multifase in vari settori ingegneristici d’interesse, a partire da macchine per lavori pesanti a trattamento di gas. L’uso della modellazione numerica è uno strumento estremamente utile che può essere particolarmente utile per investigare laddove l’investigazione sperimentale può andare incontro a difficoltà tecniche, dovute alla complessità del sistema o semplicemente per difficoltà pratiche per l’investigazione da effettuare. Lo scopo del lavoro di ricerca è basato sull’applicazione di modellazioni numeriche per assistere le industrie ad applicare utili cambiamenti per migliorare l’efficienza e affidabilità delle loro tecnologie per mezzo di uno strumento funzionale basato su una metodologia ad-hoc da elaborare specificatamente per incontrare i requisiti odierni di affidabilità e tempistiche. La fluido dinamica computazionale (CFD) è la tecnica maggiormente implementata lungo il lavoro di ricerca svolto, insieme a una tecnica similare basata su un background teorico differente. La CFD fa uso delle equazioni di Navier-Stokes e mediante l’uso di modelli addizionali permette l’analisi precisa di tecnologie interessate anche da fenomeni come turbolenza, condensazione e scambio d’energia. Il modello che fa da filo conduttore per le analisi CFD è stato il VOF, modello multifase che prevede l’immiscibilità delle fasi. Eventuali limiti della CFD possono essere superati mediante un metodo particellare lagrangiano chiamato Idrodinamica delle Particelle Liscie (SPH). In questo caso difficoltà note della CFD come punti di contatto dinamici sono risolti al netto di una minore precisione ma una maggiore velocità di calcolo. Nel lavoro di tesi presente si sono analizzati vari tipi di tecnologie industriali di interesse ingegneristico, applicando entrambi i metodi sopracitati. Un primo caso di studio è stata l’analisi della performance di dissipazione termica di un freno per una trattrice agricola. In questo caso, a partire da una metodologia creata ad-hoc per suddividere il volume di fluido in maniera ottimale e la generazione della mesh sui singoli volumi interfacciati, si è simulato l’evento di frenata, a partire da un test a rottura di riferimento, mediante i principali parametri operativi sotto forma di velocità di rotazione dei dischi ed energia termica dissipata. Dopo di ciò una matrice di 21 casi con permutazioni dei parametri e un’investigazione sui canali di flussaggio dell’olio di lubrifica sono stati realizzati per valutare l’efficienza del freno. A seguire su un condensatore industriale per gas esausti acidi è stato analizzato prima caratterizzando i flussi e dopodiché, con il caso semplificato di un tubo infinito simulante la prima sezione verticale di uno dei tubi freddi si è investigata la condensazione a parete. Il modello elaborato prevede l’accoppiamento di vari modelli al VOF e ha dimostrato la necessità di considerare anche la condensazione per via termica. Inerentemente il secondo tipo di analisi, il SPH è stato applicato alla miscelazione di olio e aria in un differenziale per automobile, dove il continuo contatto che si crea tra i denti delle ruote del riduttore rende impervio l’uso della CFD. L’analisi è stata poi eseguita considerando variazioni come il volume dell’olio e l’orientamento dei denti delle ruote per stimare l’impatto sul funzionamento della macchina.
Modellazione numerica di sistemi multifase-energetici ad alto accoppiamento per miglioramento dell’efficienza e per investigazione dettagliata di fenomeni fisici
ORLANDI, FRANCESCO
2025
Abstract
The objective of the present thesis is the investigation and development of numerical methodologies for performance prediction and specific physical phenomena investigation to be applied to systems and technologies characterized by multiphase condition in various engineering sectors of interest, from high duty machines to gas treatment sectors. The use of numerical modelling is an extremely valuable tool can be particularly useful to investigate whereas experimental investigation may encounter technical issues, due to the complexity of the system or simply the practical difficulty for the investigation to be performed. The aim of the research work is based on the application of numerical modelling to help industries to apply useful changes to improve the efficiency and the reliability of their technologies with a fully functional tool based on an ad-hoc methodology to be properly designed to meet with the nowadays requirements of reliability and timings. The computational fluid dynamic (CFD) is the technique mainly implemented during the present research work, along with a similar technique based on different theoretical backgrounds. The CFD makes use of the Navier-Stokes equations and with the use of additional models it permits the precise analysis of technologies characterized by phenomena like turbulence, condensation and energy exchange. The model which was the main protagonist is the VOF, a multiphase model that considers the phases as immiscible one into the other. Eventual limits of the CFD may be overcome with the use of a lagrangian particle method that is the Smoothed Particle Hydrodynamics (SPH). In this case the known difficulties of CFD, like dynamic zero point contacts, are resolved net of a lesser precision but with an higher calculation speed. In the present thesis work various industrial technologies of engineering interest have been analyzed, with both the afore-mentioned methods being applied. A first study case was the analysis of the thermal dissipation performance of an agricultural tractor braking system. In this case, starting from a methodology created ad-hoc to divide the fluid volume in an optimal manner, along with the mesh grid generation on each single interfaced sub-volume, the braking event was simulated starting from a reference failure test, with means of the main operative parameters. Those were in the form of the discs’ rotation velocity and dissipated thermal energy. After that a 21 cases matrix based on permutations of the different parameters and a different oil inlet channels investigation were realized to value the efficiency of the brake. After that an industrial condenser for exhaust acid gasses was analyzed firstly characterizing the fluxes of gas and liquid. After that a simplified infinite tube model, based on the first vertical section of one of the cold tubes, the wall condensation was investigated. The elaborated model considers the coupling of various models with the VOF and demonstrated the necessity of implementing also the thermal driven condensation. On the second kind of analysis, the SPH was applied to the oil-air mixing in an automotive differential, where the dynamic contact between the teeth of the gears would make the use of the CFD impassable. The analysis then was conducted considering variations like the volume of oil and the orientation of the gears’ teeth to value the impact on the working performances of the machine.File | Dimensione | Formato | |
---|---|---|---|
Orlandi_PhDThesis.pdf
embargo fino al 26/03/2028
Dimensione
63.75 MB
Formato
Adobe PDF
|
63.75 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202079
URN:NBN:IT:UNIMORE-202079