Acetic acid bacteria are versatile microorganisms renowned for synthesizing industrially valuable biomolecules, such as organic acids and exopolysaccharides. They are capable of metabolizing a wide range of carbohydrates, alcohols, and related compounds into oxidative products via incomplete oxidation. Among acetic acid bacteria, Acetobacter genus strains are widely recognized in the food industry for converting ethanol into acetic acid, while Gluconobacter genus strains are known for the incomplete oxidation of sugars like glucose into gluconic acid, a mild organic acid used as an additive in pharmaceutical, and, especially, in the food industry for its ability to lower pH and for providing a refreshing sour taste to beverages. Meanwhile, the genera Komagataeibacter and Novacetimonas (recently delineated from Komagataeibacter genus) exhibit diverse metabolic capabilities, including the production of acetic acid, gluconic acid, and bacterial cellulose. Due to these traits, acetic acid bacteria are integral to the production of fermented foods and beverages, such as vinegar and kombucha tea, which are characterized by the presence of acetic and/or gluconic acid. Additionally, acetic acid bacteria’s ability to produce bacterial cellulose, a versatile biopolymer, presents promising applications in food and biomedical sectors. The aim of this PhD thesis was to advance the production of both organic acids and bacterial cellulose through fermentation optimization, substrate innovation, and the development of novel co-culture systems. The selected bacterial strains from the Unimore Microbial Culture Collection (UMCC), isolated from fermented beverages, were chosen for their organic acid and BC production capabilities. To support advancements in industrial fermentation, UMCC strains were evaluated as platforms for converting agro-food waste into value-added products. Process optimization led to the successful conversion of cooked grape must into a high-value beverages rich in gluconic acid. A polyphasic approach was employed to explore greener bacterial cellulose functionalization methods. Three distinctive strategies were evaluated. First, acetic acid bacteria were cultivated in agro-food by-products as alternative substrates. Cheese whey and olive mill wastewater, among environmental pollutants, were repurposed as cost-effective feedstocks for bacterial cellulose synthesis. This upcycling approach converts waste into a high-value biopolymer with potential applications in packaging, medical materials, and other fields. The second strategy involved co-culturing acetic acid bacteria with lactic acid bacteria to produce bacterial cellulose-hyaluronic acid composites. This approach, designed for wound healing applications, identified optimal bacterial combinations that were further tested under optimized conditions. The resulting nanocomposites exhibited enhanced mechanical properties and cell’s proliferation, indicating their potential for biomedical applications, including tissue engineering and wound healing. The third approach focused on incorporating iron nanoparticles to create electrically conductive BC membranes via both ex-situ and in-situ methods. Variability in functionalization was observed based on bacterial strain and integration method. The development of these nanocomposites demonstrates the feasibility of producing sustainable, electrically conductive bacterial cellulose materials, offering expanded applications in electronic and bioengineering fields.
I batteri acetici sono microrganismi versatili, conosciuti per la capacità di produrre biomolecole di interesse industriale, come acidi organici ed esopolisaccaridi. Infatti, sono in grado di metabolizzare una vasta gamma di carboidrati, alcoli e composti correlati in prodotti ossidativi attraverso processi di ossidazione incompleta. Tra i batteri acetici, i ceppi appartenenti al genere Acetobacter sono riconosciuti nell'industria alimentare per la conversione dell'etanolo in acido acetico, mentre i ceppi del genere Gluconobacter sono noti per l'ossidazione incompleta di zuccheri, come il glucosio, in acido gluconico, un acido organico utilizzato nell’industria alimentare per la sua capacità di abbassare il pH e conferire un sapore acidulo e rinfrescante alle bevande. Dall’altro lato, i ceppi appartenenti ai generi Komagataeibacter e Novacetimonas (recentemente delineato da Komagataeibacter) presentano capacità metaboliche diversificate, ovvero la produzione di acidi organici e cellulosa batterica. Grazie a queste caratteristiche, i batteri acetici sono ampiamente utilizzati nella produzione di alimenti e bevande fermentate, come l'aceto e la kombucha, caratterizzati dalla presenza di acido acetico e/o acido gluconico. Inoltre, la capacità di produrre biopolimeri altamente versatili, come la cellulosa batterica, offre promettenti applicazioni nei settori alimentare e biomedico. Lo scopo di questa tesi di dottorato è stato quello di migliorare la produzione di acidi organici e di cellulosa batterica attraverso l'ottimizzazione della fermentazione, l'innovazione nei substrati e lo sviluppo di nuovi sistemi di co-coltura. I ceppi batterici selezionati dalla Unimore Microbial Culture Collection (UMCC), isolati da bevande fermentate, sono stati scelti per le loro capacità di produzione di acidi organici e cellulosa batterica. I ceppi UMCC sono stati valutati come strumento per la conversione di scarti agro-alimentari in prodotti di valore aggiunto. L'ottimizzazione del processo ha portato alla conversione di mosto cotto in bevande ad alto valore arricchite con acido gluconico. Inoltre, è stato impiegato un approccio polifasico per esplorare metodi più sostenibili di funzionalizzazione della cellulosa batterica. Tre strategie distintive sono state valutate. In primo luogo, i batteri acetici sono stati coltivati in sottoprodotti agroalimentari come substrati alternativi. Siero di latte bovino e le acque di vegetazione olearie, considerati normalmente inquinanti ambientali, sono stati utilizzati come substrati economici per la sintesi di cellulosa batterica. Questo approccio di upcycling converte i rifiuti in un biopolimero di alto valore, con potenziali applicazioni in imballaggi, materiali medicali e altri settori. La seconda strategia ha previsto la co-coltura di batteri acetici e batteri lattici per produrre nanocompositi di cellulosa batterica e acido ialuronico. Questo approccio ha permesso di identificare le combinazioni batteriche ottimali, testate successivamente in condizioni ottimizzate. I nanocompositi risultanti hanno mostrato miglioramenti nelle proprietà meccaniche e nella proliferazione cellulare, indicando il loro potenziale per applicazioni biomediche, come la guarigione delle ferite. La terza strategia ha riguardato l'integrazione di nanoparticelle di ferro per creare membrane di cellulosa batterica elettricamente conduttive, utilizzando metodi ex-situ e in-situ. A seconda del ceppo batterico utilizzato e al metodo di funzionalizzazione, è stata osservata una elevata variabilità nell’efficacia della funzionalizzazione e nelle membrane prodotte. Lo sviluppo di questi nanocompositi dimostra la fattibilità di produrre materiali di cellulosa batterica elettricamente conduttivi e sostenibili, offrendo applicazioni ampliabili nei campi dell'elettronica.
Utilizzo dei batteri acetici: Progettazione e ottimizzazione di bioprocessi per la produzione sostenibile di acidi organici e materiali a base di cellulosa batterica
BRUGNOLI, MARCELLO
2025
Abstract
Acetic acid bacteria are versatile microorganisms renowned for synthesizing industrially valuable biomolecules, such as organic acids and exopolysaccharides. They are capable of metabolizing a wide range of carbohydrates, alcohols, and related compounds into oxidative products via incomplete oxidation. Among acetic acid bacteria, Acetobacter genus strains are widely recognized in the food industry for converting ethanol into acetic acid, while Gluconobacter genus strains are known for the incomplete oxidation of sugars like glucose into gluconic acid, a mild organic acid used as an additive in pharmaceutical, and, especially, in the food industry for its ability to lower pH and for providing a refreshing sour taste to beverages. Meanwhile, the genera Komagataeibacter and Novacetimonas (recently delineated from Komagataeibacter genus) exhibit diverse metabolic capabilities, including the production of acetic acid, gluconic acid, and bacterial cellulose. Due to these traits, acetic acid bacteria are integral to the production of fermented foods and beverages, such as vinegar and kombucha tea, which are characterized by the presence of acetic and/or gluconic acid. Additionally, acetic acid bacteria’s ability to produce bacterial cellulose, a versatile biopolymer, presents promising applications in food and biomedical sectors. The aim of this PhD thesis was to advance the production of both organic acids and bacterial cellulose through fermentation optimization, substrate innovation, and the development of novel co-culture systems. The selected bacterial strains from the Unimore Microbial Culture Collection (UMCC), isolated from fermented beverages, were chosen for their organic acid and BC production capabilities. To support advancements in industrial fermentation, UMCC strains were evaluated as platforms for converting agro-food waste into value-added products. Process optimization led to the successful conversion of cooked grape must into a high-value beverages rich in gluconic acid. A polyphasic approach was employed to explore greener bacterial cellulose functionalization methods. Three distinctive strategies were evaluated. First, acetic acid bacteria were cultivated in agro-food by-products as alternative substrates. Cheese whey and olive mill wastewater, among environmental pollutants, were repurposed as cost-effective feedstocks for bacterial cellulose synthesis. This upcycling approach converts waste into a high-value biopolymer with potential applications in packaging, medical materials, and other fields. The second strategy involved co-culturing acetic acid bacteria with lactic acid bacteria to produce bacterial cellulose-hyaluronic acid composites. This approach, designed for wound healing applications, identified optimal bacterial combinations that were further tested under optimized conditions. The resulting nanocomposites exhibited enhanced mechanical properties and cell’s proliferation, indicating their potential for biomedical applications, including tissue engineering and wound healing. The third approach focused on incorporating iron nanoparticles to create electrically conductive BC membranes via both ex-situ and in-situ methods. Variability in functionalization was observed based on bacterial strain and integration method. The development of these nanocomposites demonstrates the feasibility of producing sustainable, electrically conductive bacterial cellulose materials, offering expanded applications in electronic and bioengineering fields.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Marcello Brugnoli.pdf
embargo fino al 14/04/2026
Dimensione
8.29 MB
Formato
Adobe PDF
|
8.29 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202157
URN:NBN:IT:UNIMORE-202157