The increasing number of connected vehicles has opened new frontiers in vehicle-to-everything (V2X) communication research. This PhD work focuses on the analysis and development of innovative technologies for V2X communication systems that aim at enhancing transportation efficiency, safety, and sustainability. Specifically, the research concentrates on the physical layer (PHY) of V2X communications, with a particular focus on Joint Communication and Sensing (JCAS) systems. These cutting-edge systems integrate communication and radar functionalities, enabling vehicles to exchange information while simultaneously detecting their surroundings, thereby improving road safety and traffic efficiency. This study provides a detailed analysis and comparison of two primary multicarrier modulation techniques that are envisioned as promising candidates for JCAS systems: Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Time Frequency Space (OTFS). Each of these techniques offers distinct advantages and disadvantages in terms of performance for both communication and sensing, computational complexity, and resilience under various wireless channel conditions. While OFDM is widely adopted in digital communications, its application to radio sensing presents several open challenges. On the other hand, the relatively newer OTFS technique demonstrates robustness against time and frequency selectivity, making it a promising choice for dynamic vehicular scenarios, which are expected to become more demanding as the operational frequencies of next-generation systems increase. This research addresses two primary challenges within JCAS systems: 1) The development of low-complexity algorithms for the detection of multiple obstacles (targets) and for the estimation of their key parameters (such as distance, speed, spatial coordinates, and reflected energy) in OFDM-based JCAS systems. The analysis includes both single-input single-output (SISO) and multiple-input multiple-output (MIMO) antenna systems, examining the impact of antenna cardinality on system performance and complexity. 2) The utilization of a double cyclic prefix (one in the time domain, the other one in the frequency domain) in OTFS modulation, as well as the development of novel algorithms for pilot-aided channel estimation in OTFS-based systems. It is important to underline that channel estimation is crucial for both sensing at the transmit side and for data equalization at the receive side. Finally, an OTFS-based communication system has been implemented on Software Defined Radio (SDR) platforms. The obtained experimental results have evidenced that this system can reliably operate in dynamic communication channels. The findings of this study contribute to the advancement of JCAS technology and provide valuable insights into the selection of modulation formats, paving the way for more efficient and versatile wireless communication systems. The solutions developed here have potential applications in a wide range of scenarios, including autonomous driving, intelligent traffic management, and road safety.
La crescente diffusione di veicoli connessi ha aperto nuove frontiere nella ricerca sulle comunicazioni veicolari (V2X). Questo lavoro di dottorato si concentra sull'analisi e lo sviluppo di tecnologie innovative per i sistemi di comunicazione V2X, con l'obiettivo di migliorare l'efficienza, la sicurezza e la sostenibilità dei trasporti. In particolare, la ricerca si è focalizzata sullo strato fisico (PHY) delle comunicazioni V2X, approfondendo lo studio dei sistemi per la comunicazione e sensing congiunti (Joint Communication and Sensing, JCAS). Questi sistemi innovativi integrano le funzionalità di comunicazione e radar, consentendo ai veicoli di scambiare informazioni e allo stesso tempo rilevare l'ambiente circostante, contribuendo così a migliorare la sicurezza stradale e l'efficienza del traffico. Sono state analizzate e confrontate in dettaglio due delle principali tecniche di modulazione multiportante utilizzate nei sistemi JCAS: l'OFDM (Orthogonal Frequency Division Multiplexing) e l'OTFS (Orthogonal Time Frequency Space). Entrambe queste tecniche presentano vantaggi e svantaggi specifici in termini di prestazioni, sia dal punto di vista della comunicazione che del sensing, complessità computazionale e robustezza a diverse condizioni del canale wireless. Da un lato, l'OFDM rappresenta un formato ampiamente adottato a livello di comunicazione, dall’altro il suo suo impiego nel sensing presenta ancora tanti aspetti da chiarire. Una tecnica ancora più recente è l’OTFS, che si distingue per la sua robustezza nei confronti della selettività nel tempo e in frequenza; ciò la rende una scelta promettente in scenari dinamici, come quello veicolare, i quali diventeranno sempre più critici all’aumentare delle frequenze operative dei sistemi di nuova generazione. Lo studio condotto sui sistemi JCAS si è concentrato su due problemi principali: 1) lo sviluppo di nuovi algoritmi a basso costo computazionale per la rilevazione di ostacoli multipli e stima dei loro parametri caratterizzanti (quali, distanza, velocità, coordinate spaziali ed energia) in sistemi JCAS basati su OFDM. Lo studio ha considerato sia sistemi a singola antenna in input ed output (SISO), sia a ingressi e uscite multiple (MIMO), analizzando l’impatto della molteplicità di antenne sulle prestazioni e la complessità del sistema. 2) L’impiego di un doppio prefisso ciclico (uno nel tempo ed uno in frequenza) nella modulazione OTFS e lo sviluppo di algoritmi innovativi per la stima del canale assistita da simboli pilota in un sistema che la utilizza (la stima di canale è utile sia per il sensing al lato trasmittente, sia per l'equalizzazione dei dati ricevuti al lato ricevente). Infine, è stato implementato un sistema di comunicazione basato su OTFS su piattaforme SDR (Software Defined Radio) ed è stato verificato sperimentalmente che tale sistema è in grado di operare in maniera affidabile anche in presenza di canali di comunicazione dinamici. I risultati ottenuti possono contribuire allo sviluppo della tecnologia JCAS e certamente forniscono indicazioni utili nella scelta del formato di modulazione, aprendo la strada a sistemi di comunicazione wireless più efficienti e versatili. Le soluzioni sviluppate in questo lavoro possono trovare applicazione in una vasta gamma di scenari, tra cui la guida autonoma, la gestione del traffico intelligente e la sicurezza stradale.
Comunicazioni veicolari per sistemi di trasporto intelligenti, verdi ed affidabili
MIRABELLA, MICHELE
2025
Abstract
The increasing number of connected vehicles has opened new frontiers in vehicle-to-everything (V2X) communication research. This PhD work focuses on the analysis and development of innovative technologies for V2X communication systems that aim at enhancing transportation efficiency, safety, and sustainability. Specifically, the research concentrates on the physical layer (PHY) of V2X communications, with a particular focus on Joint Communication and Sensing (JCAS) systems. These cutting-edge systems integrate communication and radar functionalities, enabling vehicles to exchange information while simultaneously detecting their surroundings, thereby improving road safety and traffic efficiency. This study provides a detailed analysis and comparison of two primary multicarrier modulation techniques that are envisioned as promising candidates for JCAS systems: Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Time Frequency Space (OTFS). Each of these techniques offers distinct advantages and disadvantages in terms of performance for both communication and sensing, computational complexity, and resilience under various wireless channel conditions. While OFDM is widely adopted in digital communications, its application to radio sensing presents several open challenges. On the other hand, the relatively newer OTFS technique demonstrates robustness against time and frequency selectivity, making it a promising choice for dynamic vehicular scenarios, which are expected to become more demanding as the operational frequencies of next-generation systems increase. This research addresses two primary challenges within JCAS systems: 1) The development of low-complexity algorithms for the detection of multiple obstacles (targets) and for the estimation of their key parameters (such as distance, speed, spatial coordinates, and reflected energy) in OFDM-based JCAS systems. The analysis includes both single-input single-output (SISO) and multiple-input multiple-output (MIMO) antenna systems, examining the impact of antenna cardinality on system performance and complexity. 2) The utilization of a double cyclic prefix (one in the time domain, the other one in the frequency domain) in OTFS modulation, as well as the development of novel algorithms for pilot-aided channel estimation in OTFS-based systems. It is important to underline that channel estimation is crucial for both sensing at the transmit side and for data equalization at the receive side. Finally, an OTFS-based communication system has been implemented on Software Defined Radio (SDR) platforms. The obtained experimental results have evidenced that this system can reliably operate in dynamic communication channels. The findings of this study contribute to the advancement of JCAS technology and provide valuable insights into the selection of modulation formats, paving the way for more efficient and versatile wireless communication systems. The solutions developed here have potential applications in a wide range of scenarios, including autonomous driving, intelligent traffic management, and road safety.File | Dimensione | Formato | |
---|---|---|---|
MirabellaMichele - PhD final thesis in ICT - 37cycle - V2X Communication for Green and Reliable Intelligent Transportation Systems - tutor Giorgio Matteo Vitetta.pdf
accesso aperto
Dimensione
14.4 MB
Formato
Adobe PDF
|
14.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202159
URN:NBN:IT:UNIMORE-202159