About 17% of the food available is wasted at the consumer level, with 60% of this occurring in households, primarily due to food durability and spoilage. Indeed, recontamination after opening and the acceleration of degradative phenomena contribute to generating household food waste, which needs to be reduced. This PhD thesis aims at contributing to Sustainable Development Goal 12 (specifically, target 12.3: Food loss and waste) by proposing a comprehensive approach for designing and validating active antimicrobial packaging for both primary and secondary shelf life applications. The final aim is to reduce food deterioration and spoilage while ensuring food safety. The first step in designing effective active packaging was the exploration of potential antimicrobials. Ethyl lauroyl arginate (LAE) and nisin were selected. Since food recontamination after opening is closely linked to environmental contamination, active packaging for use after opening requires antimicrobials with a broad spectrum of activity. For this reason, the two compounds were tested against spoilage mixed cultures, naturally developed in food. The compounds were also assessed for their solvent stability, in a perspective of production by solvent casting. Once the active compound was selected, the active packaging was produced first on a laboratory scale and then through industrial-scale methods. For lab-scale production, the biodegradable biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was chosen. Active PHBV-LAE films were formulated via solvent casting, and their antimicrobial effectiveness was studied in broth medium and in a real food system against Gram-positive and Gram-negative bacteria using a challenge test. Additionally, the release kinetics of LAE from PHBV films were investigated. The impact of food simulants and temperatures on LAE release, diffusion, and partition coefficients was evaluated. Mathematical modeling was used to elucidate the release behavior, offering understanding of its dynamics in food matrices. We also explored the potential for incorporating LAE into commercial polymers through industrial production methods for possible upscaling. Polyethylene terephthalate (PET) was selected as the commercial polymer, and two industrial packaging production methods were tested: melt blending followed by compression molding, and plasma treatment followed by the coating technique. Results showed that LAE was the most effective antimicrobial against natural spoilage cultures and resistant to solvents. The developed PHBV-LAE films exhibited significant microbial inhibition in broth media and in a real food system. The release kinetics study revealed that LAE migration from PHBV-LAE films was slower in more polar food simulants and had a lower partition coefficient, indicating that most of LAE was released rather than retained within the matrix. Mathematical modeling allowed us to identify the best-fitting model for each condition, which can be used for predictive purposes. For industrial-scale PET-LAE sheets, the melt-blending process was unfeasible due to the negative impact of LAE on PET’s mechanical properties, lack of migration in food simulants, and lack of antimicrobial activity. In contrast, plasma treatment followed by active coating showed promising results. The LAE coating adhered well to the PET substrate through intermolecular interactions, thanks to the bridging action of hydrogen phosphate. The LAE-coated PET sheets exhibited strong antimicrobial efficacy with significant reductions in microbial growth. This study highlights the potential of active packaging with LAE to inhibit food spoilage and improve food safety, while also paving the way for the industrial-scale production of active packaging incorporating LAE.
Circa il 17% degli alimenti disponibili viene sprecato a livello di consumo, con il 60% di questo spreco che si verifica negli ambienti domestici. La ricontaminazione dopo l'apertura e l'accelerazione dei processi degradativi contribuiscono a questo fenomeno, rendendo necessaria la riduzione degli sprechi alimentari. Questa tesi di dottorato contribuisce all'Obiettivo di Sviluppo Sostenibile 12 (target 12.3: dimezzare lo spreco alimentare), presentando un approccio per la progettazione e la validazione di imballaggi antimicrobici attivi, da applicare durante la shelf life primaria e secondaria. L’obiettivo finale è quello di ridurre il deterioramento degli alimenti e garantire la sicurezza alimentare. Il primo passo nella progettazione di imballaggi attivi efficaci è stata l'esplorazione di antimicrobici. Sono stati selezionati l'etil lauroil arginato (LAE) e la nisina. Poiché la ricontaminazione dopo l'apertura è legata alla contaminazione ambientale, è necessario utilizzare antimicrobici ad ampio spettro. Pertanto, i due composti sono stati testati contro colture alteranti miste, sviluppatesi negli alimenti domestici, e sono stati valutati per la loro stabilità ai solventi, in vista della produzione attraverso solvent casting. Dopo aver selezionato il composto attivo, l'imballaggio è stato prodotto prima su scala di laboratorio e poi attraverso metodi industriali. Per la produzione su scala di laboratorio, è stato scelto il biopolimero biodegradabile poli(3-idrossibutirrato-co-3-idrossivalerato) (PHBV). I film attivi PHBV-LAE sono stati formulati tramite solvent casting e la loro efficacia antimicrobica è stata studiata sia in un mezzo di coltura che in un sistema alimentare. Inoltre, è stata studiata la cinetica di rilascio del LAE dai film PHBV, valutando l'impatto dei simulanti alimentari e delle temperature sul rilascio, la diffusione, e la ripartizione del LAE. Sono stati utilizzati modelli matematici per comprendere meglio il meccanismo di rilascio in matrici alimentari. Abbiamo esplorato la possibilità di incorporare il LAE in polimeri commerciali tramite metodi industriali. È stato scelto il polietilene tereftalato (PET) e sono stati testati due metodi di produzione: melt-blending seguito da compression molding e trattamento al plasma seguito da coating attivo. I risultati hanno mostrato che il LAE è stato l'antimicrobico più efficace contro le colture di alteranti ed è risultato resistente ai solventi. I film PHBV-LAE hanno mostrato un'inibizione microbica significativa sia nel mezzo di coltura che nel sistema alimentare. Lo studio della cinetica di rilascio ha rivelato che la migrazione del LAE dai film PHBV-LAE è più lenta nei simulanti alimentari più polari e presenta un coefficiente di partizione inferiore, indicando che la maggior parte del LAE viene rilasciata piuttosto che trattenuta nella matrice. La modellazione matematica ha permesso di identificare il modello più adeguato per ciascuna condizione, da utilizzare a scopo predittivo. Per le lastre di PET-LAE su scala industriale, il processo di melt-blending si è rivelato non fattibile a causa dell'impatto negativo del LAE sulle proprietà meccaniche del PET e della mancanza di migrazione e attività antimicrobica. Al contrario, il trattamento al plasma seguito da coating attivo ha mostrato risultati promettenti, con un'ottima adesione del rivestimento di LAE al substrato di PET grazie a interazioni intermolecolari mediate dal fosfato. I campioni di PET-LAE hanno inoltre mostrato un’elevata efficacia antimicrobica. Questo studio evidenzia il potenziale degli imballaggi attivi contenenti LAE di inibire il deterioramento degli alimenti e migliorare la sicurezza alimentare, aprendo la strada alla produzione su scala industriale di imballaggi attivi contenenti LAE.
Imballaggi Antimicrobici per la Riduzione degli Sprechi e il Miglioramento della Sicurezza Alimentare: Progettazione, Sviluppo e Scalabilità
NICOSIA, CAROLA
2025
Abstract
About 17% of the food available is wasted at the consumer level, with 60% of this occurring in households, primarily due to food durability and spoilage. Indeed, recontamination after opening and the acceleration of degradative phenomena contribute to generating household food waste, which needs to be reduced. This PhD thesis aims at contributing to Sustainable Development Goal 12 (specifically, target 12.3: Food loss and waste) by proposing a comprehensive approach for designing and validating active antimicrobial packaging for both primary and secondary shelf life applications. The final aim is to reduce food deterioration and spoilage while ensuring food safety. The first step in designing effective active packaging was the exploration of potential antimicrobials. Ethyl lauroyl arginate (LAE) and nisin were selected. Since food recontamination after opening is closely linked to environmental contamination, active packaging for use after opening requires antimicrobials with a broad spectrum of activity. For this reason, the two compounds were tested against spoilage mixed cultures, naturally developed in food. The compounds were also assessed for their solvent stability, in a perspective of production by solvent casting. Once the active compound was selected, the active packaging was produced first on a laboratory scale and then through industrial-scale methods. For lab-scale production, the biodegradable biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was chosen. Active PHBV-LAE films were formulated via solvent casting, and their antimicrobial effectiveness was studied in broth medium and in a real food system against Gram-positive and Gram-negative bacteria using a challenge test. Additionally, the release kinetics of LAE from PHBV films were investigated. The impact of food simulants and temperatures on LAE release, diffusion, and partition coefficients was evaluated. Mathematical modeling was used to elucidate the release behavior, offering understanding of its dynamics in food matrices. We also explored the potential for incorporating LAE into commercial polymers through industrial production methods for possible upscaling. Polyethylene terephthalate (PET) was selected as the commercial polymer, and two industrial packaging production methods were tested: melt blending followed by compression molding, and plasma treatment followed by the coating technique. Results showed that LAE was the most effective antimicrobial against natural spoilage cultures and resistant to solvents. The developed PHBV-LAE films exhibited significant microbial inhibition in broth media and in a real food system. The release kinetics study revealed that LAE migration from PHBV-LAE films was slower in more polar food simulants and had a lower partition coefficient, indicating that most of LAE was released rather than retained within the matrix. Mathematical modeling allowed us to identify the best-fitting model for each condition, which can be used for predictive purposes. For industrial-scale PET-LAE sheets, the melt-blending process was unfeasible due to the negative impact of LAE on PET’s mechanical properties, lack of migration in food simulants, and lack of antimicrobial activity. In contrast, plasma treatment followed by active coating showed promising results. The LAE coating adhered well to the PET substrate through intermolecular interactions, thanks to the bridging action of hydrogen phosphate. The LAE-coated PET sheets exhibited strong antimicrobial efficacy with significant reductions in microbial growth. This study highlights the potential of active packaging with LAE to inhibit food spoilage and improve food safety, while also paving the way for the industrial-scale production of active packaging incorporating LAE.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Nicosia Carola.pdf
embargo fino al 14/10/2026
Dimensione
4.71 MB
Formato
Adobe PDF
|
4.71 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202181
URN:NBN:IT:UNIMORE-202181