The immune system, essential for protection against pathogens, regulation of inflammation, and in maintaining tissue homeostasis, is highly vulnerable to environmental contaminants. Among these, per- and polyfluoroalkyl substances (PFAS) are a wide class of synthetic chemicals with persistent and bio accumulative properties that pose significant health risks, including immunotoxicity. This research aimed to address important gaps in understanding the mechanisms of PFAS-induced immunotoxicity, as highlighted in the 2020 EFSA Scientific Opinion. By focusing on perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), which account for 90% of the PFAS concentrations detectable in human blood, this study investigated their effects on immune cells and the underlying mechanism of action. This project aligns with the European Green Deal’s goals to foster sustainability and replace harmful substances with safer alternatives by the development of an integrated testing strategy (ITS) to define benchmark doses needed for risk assessment. This research used an ITS that combined in vitro approaches with advanced in silico modelling to investigate the effects of PFAS on components of the immune system, including dendritic cell activation, cytokine production, B-cell and T-cell differentiation. Long-chain PFAS, such as PFOA and PFOS, were used as benchmarks to assess the relative potency of emerging PFAS. The results confirmed human epidemiological and animal data, demonstrating a direct effect of PFAS on immune cells and suppression of antibody production, with PFOA showing higher potency compared to the other PFAS analysed. The in vitro system, based on human peripheral blood mononuclear cells, successfully reproduced the in vivo effect and following RNA sequencing provided insights into the potential mechanisms of action. Critical pathways such as PPARα and glucocorticoid receptor signalling were identified as key targets. To further improve predictive capabilities, the study integrated physiologically based kinetic (PBK) models and the Universal Immune System Simulator (UISS) to simulate real-world exposure scenarios and assess vaccine response outcomes. The PBK model also allowed in vitro concentration-response data to be converted to oral equivalent doses. The results showed that predicted oral effect doses achieved the Tolerable Daily Intake (TDI) derived from epidemiological data, highlighting the robust nature of the proposed approach. A significant emphasis was also placed on the adaptation of PBK models for short-chain PFAS to address gaps between experimental data and computational predictions. This integrative approach provided valuable insights into the toxicokinetics and immunotoxic effects of these substances, improving the accuracy of regulatory risk assessments and supporting the development of advanced, non-animal test methods. In conclusion, this research has developed a robust ITS framework to enable future screening of emerging PFAS and replacement chemicals, thereby advancing safer chemical innovation and regulatory decision-making in line with the goals of the European Green Deal. By combining functional tests, computational tools, and toxicokinetic models, the study provides a paradigm shift in immunotoxicological hazard identification and risk assessment. Adaptable to broader chemical classes, the results obtained support global efforts to reduce contamination, protect public health, and transition to sustainable, non-animal testing strategies.
Il sistema immunitario, essenziale per la protezione contro i patogeni, la regolazione dell'infiammazione e il mantenimento dell'omeostasi tissutale, è altamente vulnerabile ai contaminanti ambientali. Tra questi, le sostanze per- e polifluoroalchiliche (PFAS) sono una vasta classe di sostanze chimiche di sintesi con proprietà di persistenza e bioaccumulo, in grado di rappresentare un rischio significativo per la salute. Questa ricerca ha avuto lo scopo di colmare importanti lacune nella comprensione dei meccanismi di immunotossicità indotta dai PFAS, come evidenziato nel Parere Scientifico dell'EFSA del 2020. Concentrandosi sull'acido perfluoroottanoico (PFOA), sul perfluorottano sulfonato (PFOS), sull'acido perfluorononanoico (PFNA) e sul perfluoroesano sulfonico (PFHxS), che rappresentano il 90% delle concentrazioni di PFAS rilevabili nel sangue umano, questo studio ne ha analizzato gli effetti sulle cellule immunitarie e il meccanismo d'azione sotteso. Questo progetto si allinea agli obiettivi del Green Deal europeo per promuovere la sostenibilità e sostituire le sostanze nocive con alternative più sicure, attraverso lo sviluppo di una strategia di test integrata (ITS) tesa a definire le dosi di riferimento necessarie per la valutazione del rischio. Questa ricerca ha impiegato una ITS che ha combinato approcci in vitro con avanzati modelli in silico per studiare gli effetti dei PFAS su componenti del sistema immunitario, inclusa l’attivazione delle cellule dendritiche, la produzione di citochine, la differenziazione delle cellule B e T. I PFAS a catena lunga, come il PFOA e il PFOS, sono stati utilizzati come composti di riferimento per valutare la potenza relativa dei PFAS emergenti. I risultati hanno confermato i dati epidemiologici umani e animali, dimostrando un effetto diretto dei PFAS sulle cellule immunitarie e la soppressione della produzione di anticorpi, con il PFOA che ha mostrato una potenza maggiore rispetto agli altri PFAS analizzati. Il sistema in vitro, basato su cellule mononucleari di sangue periferico umano, ha riprodotto con successo l’effetto in vivo, e il sequenziamento dell'RNA ha offerto approfondimenti sul potenziale meccanismo d’azione. Vie critiche come la segnalazione PPARα e del recettore dei glucocorticoidi sono state identificate come principali bersagli. Per migliorare ulteriormente la capacità predittiva, lo studio ha integrato modelli cinetici basati sulla fisiologia (PBK) e il Simulatore Universale del Sistema Immunitario (UISS) per simulare scenari di esposizione nel mondo reale e valutare gli esiti della risposta vaccinale. Il modello PBK ha anche permesso la conversione delle concentrazioni in vitro correlate a degli effetti, in dosi orali equivalenti. I risultati hanno indicato che le dosi di effetto orale ottenute raggiungono l’assunzione giornaliera tollerabile (TDI) derivata dai dati epidemiologici, evidenziando la robustezza dell’approccio proposto. Un’enfasi significativa è stata posta anche all'adattamento dei modelli PBK anche per i PFAS a catena corta, colmando le lacune tra i dati sperimentali e le previsioni computazionali. Questo approccio integrativo ha offerto preziose intuizioni sulla tossicocinetica e sugli effetti immunotossici di queste sostanze, migliorando l'accuratezza delle valutazioni del rischio a livello regolatorio e promuovendo lo sviluppo di metodologie di test avanzate senza l'uso di animali. In conclusione, questa ricerca ha sviluppato una robusta ITS per consentire il futuro screening dei PFAS emergenti e delle sostanze chimiche sostitutive, promuovendo, in linea con gli obiettivi del Green Deal europeo, il processo decisionale regolatorio e un’innovazione chimica più sicura. Combinando test funzionali, strumenti computazionali e modelli tossicocinetici, lo studio fornisce un cambiamento di paradigma nell’identificazione dei pericoli e nella valutazione del rischio a livello del sistema immunitario. Adattabili a classi chimiche più ampie, i risultati ottenuti supportano gli sforzi globali per ridurre la contaminazione, proteggere la salute pubblica e passare a strategie di test sostenibili e senza l’uso di animali.
TOWARD SUSTAINABLE CHEMICAL SUBSTANCES: DEVELOPMENT OF NOVEL APPROACH METHODOLOGIES TO STUDY IMMUNOTOXICITY OF PFAS
IULINI, MARTINA
2025
Abstract
The immune system, essential for protection against pathogens, regulation of inflammation, and in maintaining tissue homeostasis, is highly vulnerable to environmental contaminants. Among these, per- and polyfluoroalkyl substances (PFAS) are a wide class of synthetic chemicals with persistent and bio accumulative properties that pose significant health risks, including immunotoxicity. This research aimed to address important gaps in understanding the mechanisms of PFAS-induced immunotoxicity, as highlighted in the 2020 EFSA Scientific Opinion. By focusing on perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), which account for 90% of the PFAS concentrations detectable in human blood, this study investigated their effects on immune cells and the underlying mechanism of action. This project aligns with the European Green Deal’s goals to foster sustainability and replace harmful substances with safer alternatives by the development of an integrated testing strategy (ITS) to define benchmark doses needed for risk assessment. This research used an ITS that combined in vitro approaches with advanced in silico modelling to investigate the effects of PFAS on components of the immune system, including dendritic cell activation, cytokine production, B-cell and T-cell differentiation. Long-chain PFAS, such as PFOA and PFOS, were used as benchmarks to assess the relative potency of emerging PFAS. The results confirmed human epidemiological and animal data, demonstrating a direct effect of PFAS on immune cells and suppression of antibody production, with PFOA showing higher potency compared to the other PFAS analysed. The in vitro system, based on human peripheral blood mononuclear cells, successfully reproduced the in vivo effect and following RNA sequencing provided insights into the potential mechanisms of action. Critical pathways such as PPARα and glucocorticoid receptor signalling were identified as key targets. To further improve predictive capabilities, the study integrated physiologically based kinetic (PBK) models and the Universal Immune System Simulator (UISS) to simulate real-world exposure scenarios and assess vaccine response outcomes. The PBK model also allowed in vitro concentration-response data to be converted to oral equivalent doses. The results showed that predicted oral effect doses achieved the Tolerable Daily Intake (TDI) derived from epidemiological data, highlighting the robust nature of the proposed approach. A significant emphasis was also placed on the adaptation of PBK models for short-chain PFAS to address gaps between experimental data and computational predictions. This integrative approach provided valuable insights into the toxicokinetics and immunotoxic effects of these substances, improving the accuracy of regulatory risk assessments and supporting the development of advanced, non-animal test methods. In conclusion, this research has developed a robust ITS framework to enable future screening of emerging PFAS and replacement chemicals, thereby advancing safer chemical innovation and regulatory decision-making in line with the goals of the European Green Deal. By combining functional tests, computational tools, and toxicokinetic models, the study provides a paradigm shift in immunotoxicological hazard identification and risk assessment. Adaptable to broader chemical classes, the results obtained support global efforts to reduce contamination, protect public health, and transition to sustainable, non-animal testing strategies.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R13596.pdf
accesso aperto
Dimensione
8.64 MB
Formato
Adobe PDF
|
8.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202313
URN:NBN:IT:UNIMI-202313