Biological invasions are critically altering biodiversity and ecosystem functions and invasive species outcompete native species and are able to disrupt ecological stability. The start of an invasion is often related to the success of propagules in establishing in new areas. Among the invasion processes alien seed germination plays a pivotal role affecting the success of plant invasion, in particular at the early successional stages of colonization, where the interplay of propagule pressure and abiotc conditions determines the incipient plant community assembly. This is particularly true for habitats such as dry grasslands and coastal dunes, which are ecosystems particularly prone to alien plant invasion while hosting a unique biodiversity. To better understand alien plant invasions it is necessary to link and explore the ecological processes by an upscaling approach. This approach analyses processes across multiple ecological scales, from individual plant traits, such as seed germination rate, growth traits or multispectral data, to community-level interactions. By linking fine-scale ecological processes with larger-scale patterns, researchers might better predict invasion risks and develop effective management strategies. In this light we conducted two experiments aimed at elucidating the role of seed competition during germination stages and the role of soil features, always comparing the performances of native and alien species. We tested the effects of climate (i.e. differente temperatures) on the biotic interaction between native and alien plants during seed germination. Germination performance of nine species of native and alien (distinguishing neophytes and archeophytes) were tested with single and mixed pools of these categories of species, using a full-factorial orthogonal design. The results indicated that higher germination temperatures enhanced the success of neophytes by improving both the likelihood of germination and the rate at which germination occurred. On the other hand, these elevated temperatures adversely affected the same parameters in native species' seeds. Additionally, the presence of both native and archaeophyte seeds at lower temperatures restricted the invasiveness of neophyte species. We also conducted a soil manipulation experiment in dune system acting on the main soil properties: soil salinity, organic matter and nutrients. The experiment aims were: (i) understanding the role of soil properties in limiting alien invasion, (ii) elucidating the effect of soil properties on the whole plant community through the key species (iii) and the potentiality of a close-range remote sensing approach to study the functional response of the whole community. We found that salinity, together with organic matter, appears to reduce the abundance of alien species while increasing the abundance of native species. Furthermore, less harsh conditions created a community dominated by the key species Cakile maritima, which competes with the native species for resources while leaving space for alien species. Finally, we found that remotely sensed images are able to depict changes in flavonoids concentration in leaves as well explained leaf traits variance. Our results showed that considering the early stages of plant colonisation may be crucial for contrasting alien species, as the invasion success seems strongly affected by the conditions at the beginning of plant succession and establishment. We have also shown that remote sensing is a promising tool for studying the environment at a fine scale, and opened up the possibility of upscaling to a broader scale of investigation.
Le invasioni biologiche stanno criticamente alterando la biodiversità e le funzioni degli ecosistemi, poiché le specie invasive competono con le specie autoctone e possono destabilizzare l’equilibrio ecologico. L'inizio di un'invasione è spesso legato al successo dei propaguli nel radicarsi in nuove aree. Tra i processi d’invasione, la germinazione dei semi delle specie aliene svolge un ruolo cruciale, influenzando il successo dell'invasione vegetale, in particolare nelle prime fasi successionali, dove l’interazione tra la pressione dei propaguli e le condizioni abiotiche determina la composizione iniziale della comunità vegetale. Questo è particolarmente vero per habitat come le praterie aride e le dune costiere, ecosistemi particolarmente suscettibili alle invasioni da parte di piante aliene e che ospitano una biodiversità unica. Per comprendere meglio l’invasione biologica, è necessario collegare e approfondire i processi ecologici tramite un approccio di tipo upscaling, che analizza i processi attraverso diverse scale ecologiche: dai tratti individuali delle piante, come il tasso di germinazione dei semi, i tratti di crescita o i dati multispettrali, fino alle interazioni a livello comunitario. Collegando i processi ecologici su piccola scala con i modelli su scala più ampia, i ricercatori potrebbero prevedere meglio i rischi d’invasione e sviluppare strategie di gestione efficaci. In quest'ottica, abbiamo condotto due esperimenti per chiarire il ruolo della competizione tra semi durante le fasi di germinazione e il ruolo delle caratteristiche del suolo, confrontando sempre le prestazioni tra specie autoctone e aliene. Abbiamo testato gli effetti del clima (ossia diverse temperature) sull'interazione biotica tra piante autoctone e aliene durante la germinazione dei semi. Le prestazioni di germinazione di nove specie, autoctone e aliene (distinguendo tra neofite e archeofite), sono state testate con pool singoli e misti di queste categorie di specie, utilizzando un disegno ortogonale fattoriale. I risultati hanno indicato che temperature di germinazione più elevate favorivano il successo delle neofite, migliorando sia la probabilità di germinazione sia la velocità con cui questa avveniva. D’altro canto, queste temperature elevate hanno avuto effetti negativi sugli stessi parametri nei semi delle specie autoctone. Inoltre, la presenza di semi autoctoni e archeofiti a temperature più basse ha limitato l'invasività delle specie neofite. Abbiamo inoltre condotto un esperimento di manipolazione del suolo in un sistema dunale, intervenendo sulle principali proprietà del suolo: salinità, materia organica e nutrienti. Gli obiettivi dell’esperimento erano: (i) comprendere il ruolo delle proprietà del suolo nel limitare l'invasione aliena, (ii) chiarire l'effetto delle proprietà del suolo sull'intera comunità vegetale attraverso le specie chiave, e (iii) valutare il potenziale di un approccio di close-range remote sensing per studiare la risposta funzionale dell’intera comunità. Abbiamo rilevato che la salinità, insieme alla sostanza organica, sembra ridurre l'abbondanza delle specie aliene aumentando quella delle specie autoctone. Inoltre, condizioni meno severe favoriscono una comunità dominata dalla specie chiave Cakile maritima, che compete con le specie autoctone per le risorse lasciando spazio alle specie aliene. Infine, abbiamo riscontrato che le immagini ottenute tramite remote sensing sono in grado di rilevare variazioni della concentrazione di flavonoidi nelle foglie, spiegando bene anche la variabilità dei tratti fogliari. I nostri risultati mostrano che considerare le fasi iniziali della colonizzazione è fondamentale per contrastare le specie aliene, poiche il siccesso dell’invasione e strettamente legato alle condizioni iniziali di successione e insediamento delle specie.
UN APPROCCIO DI TIPO UPSCALING PER LO STUDIO DELL'INVASIONE BIOLOGICA NEI PRIMI STADI DELLA SUCCESSIONE
TROTTA, GIACOMO
2025
Abstract
Biological invasions are critically altering biodiversity and ecosystem functions and invasive species outcompete native species and are able to disrupt ecological stability. The start of an invasion is often related to the success of propagules in establishing in new areas. Among the invasion processes alien seed germination plays a pivotal role affecting the success of plant invasion, in particular at the early successional stages of colonization, where the interplay of propagule pressure and abiotc conditions determines the incipient plant community assembly. This is particularly true for habitats such as dry grasslands and coastal dunes, which are ecosystems particularly prone to alien plant invasion while hosting a unique biodiversity. To better understand alien plant invasions it is necessary to link and explore the ecological processes by an upscaling approach. This approach analyses processes across multiple ecological scales, from individual plant traits, such as seed germination rate, growth traits or multispectral data, to community-level interactions. By linking fine-scale ecological processes with larger-scale patterns, researchers might better predict invasion risks and develop effective management strategies. In this light we conducted two experiments aimed at elucidating the role of seed competition during germination stages and the role of soil features, always comparing the performances of native and alien species. We tested the effects of climate (i.e. differente temperatures) on the biotic interaction between native and alien plants during seed germination. Germination performance of nine species of native and alien (distinguishing neophytes and archeophytes) were tested with single and mixed pools of these categories of species, using a full-factorial orthogonal design. The results indicated that higher germination temperatures enhanced the success of neophytes by improving both the likelihood of germination and the rate at which germination occurred. On the other hand, these elevated temperatures adversely affected the same parameters in native species' seeds. Additionally, the presence of both native and archaeophyte seeds at lower temperatures restricted the invasiveness of neophyte species. We also conducted a soil manipulation experiment in dune system acting on the main soil properties: soil salinity, organic matter and nutrients. The experiment aims were: (i) understanding the role of soil properties in limiting alien invasion, (ii) elucidating the effect of soil properties on the whole plant community through the key species (iii) and the potentiality of a close-range remote sensing approach to study the functional response of the whole community. We found that salinity, together with organic matter, appears to reduce the abundance of alien species while increasing the abundance of native species. Furthermore, less harsh conditions created a community dominated by the key species Cakile maritima, which competes with the native species for resources while leaving space for alien species. Finally, we found that remotely sensed images are able to depict changes in flavonoids concentration in leaves as well explained leaf traits variance. Our results showed that considering the early stages of plant colonisation may be crucial for contrasting alien species, as the invasion success seems strongly affected by the conditions at the beginning of plant succession and establishment. We have also shown that remote sensing is a promising tool for studying the environment at a fine scale, and opened up the possibility of upscaling to a broader scale of investigation.File | Dimensione | Formato | |
---|---|---|---|
PhD_Tesi_finale_REV1.pdf
accesso aperto
Dimensione
7.34 MB
Formato
Adobe PDF
|
7.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202395
URN:NBN:IT:UNITS-202395