This research focuses on the thermophysical characterization of innovative working fluids designed to operate in high-temperature closed thermodynamic cycles. The identification and study of novel pure and/or mixed working fluids aim to enhance the performance of thermodynamic cycles for the production of electrical and thermal energy. The study is framed within the context of decarbonizing the industrial and energy sectors, exploring advancements in key technologies such as Organic Rankine Cycles (ORC), high-temperature heat pumps (HTHP), and innovative power cycles for concentrated solar power (CSP) systems, which are essential to achieving these goals. In this context, silicon tetrachloride (SiCl₄) has been proposed for the first time in the literature as a working fluid for high-temperature power cycles. Compared to conventional ORC fluids, which are thermally stable at maximum operating temperatures around 300°C, SiCl₄ can maintain thermochemical stability beyond 650°C. This opens new possibilities for heat recovery from sources such as high-temperature industrial exhaust gases and for improving the efficiency of biomass or solar power plants. In parallel, fluorobenzene has been proposed as an innovative fluid for both ORC and HTHP cycles. Thermal stability tests indicate a degradation rate of fluorobenzene within 5% annually at a temperature of 350°C, positioning it among the few organic fluids thermally stable beyond 300°C. Unlike the conventional thermal stability test conducted at the Fluid Testing Laboratory of the University of Brescia, the methodology was revised to simulate the presence of a system for the removal of non-condensable gases (NCG). The experimental characterization of the identified working fluids extends beyond thermal stability testing, encompassing volumetric property measurements. For this reason, a significant portion of the research was dedicated to experimental measurements of vapor-liquid equilibrium (VLE) data and densities for CO₂ mixtures using an isochoric apparatus developed during this research at the Fluid Testing Laboratory of the University of Brescia. Volumetric characterization was completed with VLE and density measurements of CO₂+SiCl₄ and CO₂+C₂Cl₄ mixtures, conducted during the research period at the Centre for Energy Environment Processes (CEEP) of Mines Paris PSL, in Fontainebleau, France. The analysis of CO₂-based mixtures as working fluids is aimed at exploring their applicability in transcritical cycles for HTHPs (around 200°C) and for power cycles in concentrated solar power (CSP) plants with central receivers (above 550°C). Vapor-liquid equilibrium (VLE) properties were measured using a variable-volume PVT apparatus, enabling accurate calibration of the equation of state and achieving an absolute average deviation (AAD%) of 0.68% compared to experimental data. Density data were measured using a vibrating-tube densimeter (VTD), which allowed for a more comprehensive characterization of the mixture. An innovative procedure enabled the acquisition of additional bubble points (VLE) through the densimeter, which were consistent with the measurements obtained using the PVT apparatus. The thesis, structured as a collection of scientific articles organized by research areas, includes: Part 1, dedicated to the characterization of pure fluids for high-temperature cycles; Part 2, focused on the experimental study of CO₂ mixtures; Part 3, which delves into models for estimating transport properties; and Part 4, which concludes with system analyses and techno-economic evaluations.
Questa ricerca si focalizza sulla caratterizzazione termofisica di fluidi di lavoro innovativi, destinati ad operare in cicli termodinamici chiusi ad alte temperature. L’identificazione, e lo studio, di fluidi di lavoro puri e/od in miscela innovativi è mirata al miglioramento delle prestazioni di cicli termodinamici per la produzione di energia elettrica e termica. Lo studio si colloca nell'ambito della decarbonizzazione dei settori industriale ed energetico, esplorando il potenziamento di tecnologie chiave come i cicli Rankine a fluido organico (ORC), le pompe di calore ad alta temperatura (HTHP) e cicli di potenza innovativi per sistemi a concentrazione solare (CSP), fondamentali per il raggiungimento di questi obiettivi. In questo contesto, è stato proposto per la prima volta in letteratura il tetracloruro di silicio (SiCl₄) come fluido di lavoro per cicli di potenza ad alta temperatura. Rispetto ai fluidi ORC convenzionali, limitati dalla stabilità termica ad operare a temperature massime intorno a 300°C, il SiCl₄ è in grado di mantenere stabilità termochimica oltre 650°C, aprendo nuove possibilità per il recupero di calore da fonti come i gas esausti industriali ad alta temperatura e per l’efficientamento di centrali a biomassa o solari. In parallelo, il fluorobenzene è stato proposto come fluido innovativo sia per cicli ORC e HTHP. Test di stabilità termica evidenziano un tasso di degradazione del fluorobenzene entro il 5% annuo ad una temperatura di 350°C, posizionandosi tra i pochi fluidi organici termicamente stabili oltre 300°C. Contrariamente al convenzionale test di stabilità termica presso il Laboratorio dei Test dei Fluidi dell’Università degli Studi di Brescia, la metodologia è stata revisionata per simulare la presenza di un sistema di rimozione dei gas non condensabili (NCG). La caratterizzazione sperimentale dei fluidi di lavoro identificati non si limita al test di stabilità termica, bensì sono state misurate anche proprietà volumetriche dei fluidi. Per questo motivo un’importante parte della ricerca è stata dedicata alla misurazione di dati sperimentali di equilibrio liquido-vapore (VLE) e densità per miscele di CO₂ tramite un apparato isocoro sviluppato nel corso di questa ricerca presso il Laboratorio di Test dei Fluidi dell’Università di Brescia. La caratterizzazione volumetrica è stata completata con misure VLE e di densità di CO₂+SiCl₄ e CO₂+C₂Cl₄, eseguite durante il periodo trascorso presso il Centre for Energy Environment Processes (CEEP) di Mines Paris PSL, in Fontainebleau (Francia). L’analisi delle miscele a base di CO₂ come fluido di lavoro è finalizzata ad esplorarne l’applicabilità in ciclo transcritico per HTHP (intorno 200°C) e per cicli di potenza in impianti a concentrazione solare (CSP) con ricevitore centrale (sopra 550°C). Le proprietà di equilibrio liquido-vapore (VLE) sono state misurate con un apparato PVT a volume variabile, consentendo di calibrare con accuratezza l’equazione di stato ed ottenendo una deviazione media assoluta (AAD%) dello 0.68% rispetto ai dati sperimentali. Dati di densità sono stati misurati tramite un densimetro a tubo vibrante (VTD), che ha permesso di caratterizzare meglio la miscela. Una procedura innovativa ha permesso di ottenere ulteriori punti di bolla (VLE) attraverso il densimetro, i quali erano in accordo con le misure effettuate con l’apparato PVT. La tesi, strutturata come una raccolta di articoli scientifici organizzati per aree di ricerca, include: Parte 1, dedicata alla caratterizzazione dei fluidi puri per cicli ad alta temperatura; Parte 2, focalizzata sulla sperimentazione delle miscele di CO₂; Parte 3, che approfondisce i modelli per la stima delle proprietà di trasporto; e Parte 4, che conclude con analisi sistemiche e valutazioni tecnico-economiche.
Thermophysical characterisation of innovative working fluids for closed thermodynamic cycles.
Doninelli, Michele
2025
Abstract
This research focuses on the thermophysical characterization of innovative working fluids designed to operate in high-temperature closed thermodynamic cycles. The identification and study of novel pure and/or mixed working fluids aim to enhance the performance of thermodynamic cycles for the production of electrical and thermal energy. The study is framed within the context of decarbonizing the industrial and energy sectors, exploring advancements in key technologies such as Organic Rankine Cycles (ORC), high-temperature heat pumps (HTHP), and innovative power cycles for concentrated solar power (CSP) systems, which are essential to achieving these goals. In this context, silicon tetrachloride (SiCl₄) has been proposed for the first time in the literature as a working fluid for high-temperature power cycles. Compared to conventional ORC fluids, which are thermally stable at maximum operating temperatures around 300°C, SiCl₄ can maintain thermochemical stability beyond 650°C. This opens new possibilities for heat recovery from sources such as high-temperature industrial exhaust gases and for improving the efficiency of biomass or solar power plants. In parallel, fluorobenzene has been proposed as an innovative fluid for both ORC and HTHP cycles. Thermal stability tests indicate a degradation rate of fluorobenzene within 5% annually at a temperature of 350°C, positioning it among the few organic fluids thermally stable beyond 300°C. Unlike the conventional thermal stability test conducted at the Fluid Testing Laboratory of the University of Brescia, the methodology was revised to simulate the presence of a system for the removal of non-condensable gases (NCG). The experimental characterization of the identified working fluids extends beyond thermal stability testing, encompassing volumetric property measurements. For this reason, a significant portion of the research was dedicated to experimental measurements of vapor-liquid equilibrium (VLE) data and densities for CO₂ mixtures using an isochoric apparatus developed during this research at the Fluid Testing Laboratory of the University of Brescia. Volumetric characterization was completed with VLE and density measurements of CO₂+SiCl₄ and CO₂+C₂Cl₄ mixtures, conducted during the research period at the Centre for Energy Environment Processes (CEEP) of Mines Paris PSL, in Fontainebleau, France. The analysis of CO₂-based mixtures as working fluids is aimed at exploring their applicability in transcritical cycles for HTHPs (around 200°C) and for power cycles in concentrated solar power (CSP) plants with central receivers (above 550°C). Vapor-liquid equilibrium (VLE) properties were measured using a variable-volume PVT apparatus, enabling accurate calibration of the equation of state and achieving an absolute average deviation (AAD%) of 0.68% compared to experimental data. Density data were measured using a vibrating-tube densimeter (VTD), which allowed for a more comprehensive characterization of the mixture. An innovative procedure enabled the acquisition of additional bubble points (VLE) through the densimeter, which were consistent with the measurements obtained using the PVT apparatus. The thesis, structured as a collection of scientific articles organized by research areas, includes: Part 1, dedicated to the characterization of pure fluids for high-temperature cycles; Part 2, focused on the experimental study of CO₂ mixtures; Part 3, which delves into models for estimating transport properties; and Part 4, which concludes with system analyses and techno-economic evaluations.File | Dimensione | Formato | |
---|---|---|---|
TesiDoninelli.pdf
accesso aperto
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202557
URN:NBN:IT:UNIBS-202557