This study investigates the synthesis of TPEs, based on derivatives of natural and renewable molecules, possibly to be applied in tyre industry. Controlled Radical Polymerization (CRP) techniques, including Atom Transfer Radical Polymerization (ATRP) and Reversible Addition-Fragmentation chain Transfer (RAFT), were employed to produce acrylic ABA block copolymers. In these structures, the central block (B) serves as the “soft”, low Tg component, while the external blocks (A) consist of “glassy”, high Tg segments that, forming physical crosslinks, confer the elastomeric behaviour to the copolymer. A series of copolymers was synthesized to investigate the effect of the nature and quantity of the external blocks on the final properties of the materials. After the optimization of the CRP experimental conditions for the selected biobased monomers, homo-polymers were structurally and thermally characterized. Particular attention was given to eugenyl methacrylate (EuMA), a bifunctional biobased monomer, with an in-depth discussion of its polymerization kinetic using ARGET-ATRP. In this respect, the choice of the ATRP ligand used for the formation of the Cu-based catalyst system, strongly influenced the final structure of polymers and the polymerization yield, producing either linear polymers soluble in organic solvents (with PMDETA or ME6TREN) or insoluble crosslinked materials (with BiPy or HMTETA). Using ATRP, lauryl methacrylate (LMA), a C12 n-alkyl methacrylate derived from fatty acids, was employed as the middle block (B), and extended with renewable methacrylates such as EuMA, dihydroeugenyl methacrylate (DEuMA), syringaldehyde methacrylate (SyMA), or carvacryl methacrylate (CaMA). The resulting ABA triblock copolymers, with external block content ranging from 10% to 60% by weight, exhibited thermal properties consistent with their block composition. Differential Scanning Calorimetry (DSC) revealed lower Tg values around -50°C and higher Tg values (when observable) between 60°C and 80°C. Mechanical testing showed that the increasing of the external block content generally reduced elongation at break (εb) while improving ultimate strength (σ), as predictable. Interestingly, the nature of the external blocks, rather than their quantity, played a crucial role in determining the final mechanical behaviour of the materials. The best performance in term of TPE mechanical properties was observed for copolymers with approximately 22 wt% SyMA (εb = 280%, σ = 0.8 MPa) and 23 wt% CaMA (εb = 230%, σ = 0.3 MPa). In contrast, copolymers with DEuMA at comparable loadings (27 wt%) showed lower elongation (εb < 80%) but higher strength (σ = 1.2 MPa). Using RAFT polymerization, a C13 n-alkyl methacrylate derived from fatty acids was employed to make the middle block (B), and then extended with biobased methacrylates such as CaMA or betulin methacrylate (BetuMA). Once again it was found that increasing glassy block content resulted in lower elongation (εb) and higher strength (σ) whose magnitude depended on the nature of the external blocks. Enhanced TPE performances were observed in copolymers containing e.g. 22 wt% BetuMA (εb = 370%, σ = 3.9 MPa) or 21 wt% CaMA (εb = ~500%, σ = 0.9 MPa), outperforming similar copolymers synthesized via ATRP. In this thesis was also explored the synthesis of a novel biobased elastomeric polymer resembling polybutadiene, a commonly used elastomeric polymer. Starting from muconic acid, a dicarboxylic conjugated diene obtained via enzymatic processes, esterification with a long-chain alkyl alcohol produced a monomer that polymerized into a highly regular 1,4-structured polymer with a Tg as low as -60°C. Finally, in collaboration with Prometeon Tyre Group, the potential application of TPEs in truck tyre compounds was assessed.
Gli elastomeri termoplastici (TPE) sono ampiamente utilizzati come alternativa ai polimeri reticolati chimicamente, rispondendo alla necessità di estendere il ciclo di vita dei prodotti e ridurre i rifiuti. I TPE, caratterizzati da reticolazioni fisiche e reversibili, combinano la riciclabilità e lavorabilità dei termoplastici con l’elasticità degli elastomeri. Tuttavia, è auspicabile sostituire le materie prime di origine fossile per ridurne l’impatto economico e ambientale. Questo studio affronta la sintesi di TPE basati su derivati di molecole naturali e rinnovabili, con potenziali applicazioni nel settore degli pneumatici. Sono state utilizzate tecniche di Polimerizzazione Radicalica Controllata (CRP), come ATRP e RAFT, per ottenere copolimeri a blocchi acrilici ABA Una serie di copolimeri è stata sintetizzata per studiare l’effetto della natura e quantità dei blocchi esterni sulle proprietà finali. Dopo l’ottimizzazione delle condizioni di CRP per i monomeri bio-based, gli omopolimeri ottenuti sono stati caratterizzati strutturalmente e termicamente. Particolare attenzione è stata rivolta al metacrilato di eugenile (EuMA), un monomero bifunzionale bio-based, approfondendo la sua cinetica di polimerizzazione tramite ATRP con attivatore rigenerato (ARGET). La scelta del ligando ATRP, cruciale per il sistema catalitico a base di rame, ha influenzato la resa e la struttura dei polimeri, portando alla formazione di materiali lineari solubili o reticolati insolubili. Tramite ATRP, il metacrilato di laurile (LMA), derivato da acidi grassi, è stato usato come blocco centrale B, e successivamente esteso con metacrilati bio-based come EuMA, DEuMA, SyMA o CaMA. I copolimeri ABA ottenuti, con contenuti di blocchi esterni tra 10% e 60% in peso, hanno mostrato proprietà termiche coerenti con la loro composizione. Le analisi DSC hanno evidenziato Tg basse intorno a -50°C e, quando presenti, Tg alte tra 60°C e 80°C. I test meccanici hanno mostrato che un aumento dei blocchi esterni riduce l’allungamento a rottura (εb) ma aumenta la resistenza a rottura (σ). Tuttavia, la natura chimica dei blocchi esterni si è rivelata più influente della quantità nel determinare le proprietà meccaniche finali. Le migliori prestazioni sono state osservate con circa 22% in peso di SyMA (εb = 280%, σ = 0,8 MPa) e 23% di CaMA (εb = 230%, σ = 0,3 MPa). In confronto, copolimeri con 27% di DEuMA hanno mostrato minore allungamento (εb < 80%) ma maggiore resistenza (σ = 1,2 MPa). Con la RAFT, un metacrilato C13 derivato da acidi grassi è stato utilizzato per il blocco centrale, esteso poi con CaMA o metacrilato di betulina (BetuMA). Anche qui, l’aumento del contenuto vetroso ha comportato una riduzione di εb e un aumento di σ, dipendenti dalla natura del blocco esterno. Buone prestazioni sono state ottenute con 22% di BetuMA (εb = 370%, σ = 3,9 MPa) e 21% di CaMA (εb ≈ 500%, σ = 0,9 MPa), superiori a copolimeri simili ottenuti via ATRP. È stata inoltre esplorata la sintesi di un nuovo polimero elastomerico bio-based simile al polibutadiene. A partire dall’acido muconico, un diene coniugato ottenuto enzimaticamente, si è ottenuto un monomero che polimerizza in una struttura regolare di tipo 1,4, con Tg di circa -60°C. Infine, in collaborazione con Prometeon Tyre Group, è stata valutata l’applicazione dei TPE nei compound per pneumatici da autocarro. Il TPE commerciale poli(stirene-isoprene-stirene) (SIS), inserito nella mescola del battistrada, ha mostrato cinetiche di vulcanizzazione, proprietà meccaniche e dinamiche simili a quelle del controllo privo di TPE, supportandone l’impiego industriale in questo settore.
Sintesi di elastomeri termoplastici da fonti rinnovabili per applicazioni tyre
VITTORE, ANIELLO
2025
Abstract
This study investigates the synthesis of TPEs, based on derivatives of natural and renewable molecules, possibly to be applied in tyre industry. Controlled Radical Polymerization (CRP) techniques, including Atom Transfer Radical Polymerization (ATRP) and Reversible Addition-Fragmentation chain Transfer (RAFT), were employed to produce acrylic ABA block copolymers. In these structures, the central block (B) serves as the “soft”, low Tg component, while the external blocks (A) consist of “glassy”, high Tg segments that, forming physical crosslinks, confer the elastomeric behaviour to the copolymer. A series of copolymers was synthesized to investigate the effect of the nature and quantity of the external blocks on the final properties of the materials. After the optimization of the CRP experimental conditions for the selected biobased monomers, homo-polymers were structurally and thermally characterized. Particular attention was given to eugenyl methacrylate (EuMA), a bifunctional biobased monomer, with an in-depth discussion of its polymerization kinetic using ARGET-ATRP. In this respect, the choice of the ATRP ligand used for the formation of the Cu-based catalyst system, strongly influenced the final structure of polymers and the polymerization yield, producing either linear polymers soluble in organic solvents (with PMDETA or ME6TREN) or insoluble crosslinked materials (with BiPy or HMTETA). Using ATRP, lauryl methacrylate (LMA), a C12 n-alkyl methacrylate derived from fatty acids, was employed as the middle block (B), and extended with renewable methacrylates such as EuMA, dihydroeugenyl methacrylate (DEuMA), syringaldehyde methacrylate (SyMA), or carvacryl methacrylate (CaMA). The resulting ABA triblock copolymers, with external block content ranging from 10% to 60% by weight, exhibited thermal properties consistent with their block composition. Differential Scanning Calorimetry (DSC) revealed lower Tg values around -50°C and higher Tg values (when observable) between 60°C and 80°C. Mechanical testing showed that the increasing of the external block content generally reduced elongation at break (εb) while improving ultimate strength (σ), as predictable. Interestingly, the nature of the external blocks, rather than their quantity, played a crucial role in determining the final mechanical behaviour of the materials. The best performance in term of TPE mechanical properties was observed for copolymers with approximately 22 wt% SyMA (εb = 280%, σ = 0.8 MPa) and 23 wt% CaMA (εb = 230%, σ = 0.3 MPa). In contrast, copolymers with DEuMA at comparable loadings (27 wt%) showed lower elongation (εb < 80%) but higher strength (σ = 1.2 MPa). Using RAFT polymerization, a C13 n-alkyl methacrylate derived from fatty acids was employed to make the middle block (B), and then extended with biobased methacrylates such as CaMA or betulin methacrylate (BetuMA). Once again it was found that increasing glassy block content resulted in lower elongation (εb) and higher strength (σ) whose magnitude depended on the nature of the external blocks. Enhanced TPE performances were observed in copolymers containing e.g. 22 wt% BetuMA (εb = 370%, σ = 3.9 MPa) or 21 wt% CaMA (εb = ~500%, σ = 0.9 MPa), outperforming similar copolymers synthesized via ATRP. In this thesis was also explored the synthesis of a novel biobased elastomeric polymer resembling polybutadiene, a commonly used elastomeric polymer. Starting from muconic acid, a dicarboxylic conjugated diene obtained via enzymatic processes, esterification with a long-chain alkyl alcohol produced a monomer that polymerized into a highly regular 1,4-structured polymer with a Tg as low as -60°C. Finally, in collaboration with Prometeon Tyre Group, the potential application of TPEs in truck tyre compounds was assessed.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Aniello Vittore def.pdf
accesso aperto
Dimensione
10.9 MB
Formato
Adobe PDF
|
10.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/202741
URN:NBN:IT:UNINSUBRIA-202741