This dissertation explores the impact of renewable energy sources (RES) on CO2 emissions related to the production of electricity in the Italian power system. The analysis is based on the evaluation of both the economic and the environmental impact of RES under three main perspectives. The first Chapter provides an assessment of the economic value of RES generation and the connected amount of saved carbon emissions. Through a simulation-based model, the resulting benefits are compared with the cost of the incentive schemes which are aimed at promoting the penetration of RES in the power market. The results show that the annual savings of carbon emissions nationwide amount to nearly 22 MtCO2 whereas the value of CO2 reduction is estimated at 348 million euros. The economic savings only from large and small-scale wind and solar generation in 2018 account for nearly 19 billion euros whereas total welfare is increased by nearly 42%. The second part of this thesis consists of two Chapters, which both examine the techniques for the estimation of marginal emission factors (MEFs) from electricity production. Marginal emission factors are often interpreted as the carbon intensity of the power plants that mostly act on the margin and therefore are able to influence equilibrium prices and quantities in the wholesale power market. The basic techniques for the estimation of CO2 marginal emission factors are carefully examined in the second Chapter. The empirical analysis builds up on previous methods and suggests a novel estimation procedure based on autoregressive fractionally integrated moving average (ARIMA/ARFIMA) time-series components. This methodology is applied for the calculation of the Italian MEF, which is estimated to range between 0.5 and 0.65 tCO2/MWh in 2018, depending on the observed month and season of the year. The third Chapter builds up on the previous one by adding both (1) the specific zonal configuration of the Italian power market together with a novel (2) econometric approach that is able to capture the specific time-series features of the relationship between CO2 emissions and electricity generation. The preliminary unit root and stationarity tests confirm the presence of fractional behaviour in the data, which supports the use of the fractional cointegration vector autoregressive model (FCVAR) framework. The results display the expected heterogeneity, with the MEF varying according to the reference zone and the nature of time-series variables. Sardinia reveals the highest MEF (0.71 tCO2/MWh) while Sicily the lowest (0.07 tCO2/MWh), whereas for the North the MEF is nearly 0.2 tCO2/MWh. The fourth Chapter concludes this thesis with a comprehensive review of the literature on the economic and environmental effects of energy storage. Storage is useful for its role of smoothing the increasing levels of intermittent RES generation, though the literature generally warns on its ambiguous effects in the environment. Some basic OLS estimations based on aggregate data for the zone North reveal that storage generation reduces carbon emissions, mostly during off-peak hours. The estimated MEF from storage results in 0.19 tCO2/MWh. This reveals some effectiveness of storage in its role of crowding out the more carbon-intensive generation from thermoelectric power plants in the area. Furthermore, an extension of the simulation approach presented in the second Chapter allows to compute the net carbon balance arising from charge and discharge operations of pumped hydroelectric storage (PHS). The extended simulation approach indicates that PHS in the zone North contributed to reduce carbon emissions by nearly 471 ktCO2 in 2018. This result is consistent with the assumed coefficient of round-trip efficiency of PHS power plants documented in the literature, which is equal to 74%.
La presente tesi analizza il contributo della produzione di energia elettrica da fonti di energia rinnovabile (FER) alla riduzione dei livelli di emissione di CO2 nel contesto del mercato elettrico Italiano. L’elaborato ha il principale scopo di studiare il contributo economico ed ambientale delle FER in relazione a tre prospettive fondamentali di ricerca. Il primo Capitolo fornisce una stima del valore economico della produzione di energia elettrica da FER e contestualmente della quantità di emissioni di CO2 evitate per i dati relativi all’anno 2018. Attraverso una simulazione empirica, i benefici ottenuti dal dispaccio di energia elettrica da fonti rinnovabili vengono confrontati con i costi di incentivazione sostenuti per la promozione delle rinnovabili stesse nel mercato. I risultati ottenuti mostrano che le FER hanno permesso di risparmiare in Italia nel 2018 circa 22 MtCO2 all’ambiente, e che il valore economico di tale riduzione viene stimato in circa 348 milioni di euro. Il risparmio economico legato alla produzione da impianti solari ed eolici di grande e piccola taglia è stato pari a circa 19 miliardi di euro nel 2018, mentre il beneficio economico netto aggregato legato alla penetrazione delle rinnovabili nel mercato Italiano è aumentato del 42%. La seconda parte della tesi è suddivisa in due Capitoli, che presentano le tecniche statistiche per la misurazione dei fattori marginali di emissione (MEFs) legati alla produzione di energia elettrica. Il secondo Capitolo introduce una nuova procedura di stima dei MEF nazionali, basata su modelli autoregressivi e a media mobile con componenti frazionarie (ARIMA/ARFIMA). L’applicazione di tale metodologia fornisce una stima del MEF del sistema elettrico Italiano che varia fra 0.5 e 0.65 tCO2/MWh nel 2018, a seconda dell’approccio empirico utilizzato e del periodo di riferimento. Il terzo Capitolo estende il precedente incorporando (1) la specifica configurazione zonale del mercato elettrico Italiano ed utilizzando (2) un approccio econometrico integrato che include l’utilizzo di un modello di cointegrazione frazionaria (FCVAR) per la misurazione dei MEF zonali del sistema elettrico Italiano. I risultati confermano l’eterogeneità attesa, a seconda della zona di riferimento e della natura delle serie storiche osservate. La Sardegna riporta il maggior MEF (0.71 tCO2/MWh) e la Sicilia il minore (0.07 tCO2/MWh), mentre per la zona Nord il MEF viene stimato in circa 0.2 tCO2/MWh. Il quarto Capitolo conclude l’elaborato esaminando i precedenti studi legati all’effetto economico ed ambientale della generazione di elettricità da impianti di storage. I risultati preliminari ottenuti per la zona Nord riportano che la generazione da storage ha contribuito a ridurre le emissioni di CO2 in media di 0.19 tCO2 per MWh nel 2018, e tale effetto è più significativo durante le ore fuori picco rispetto a quelle di picco. Inoltre, un’estensione dell’approccio di simulazione presentato nel secondo Capitolo permette di calcolare il bilancio netto delle emissioni di carbonio legato alle operazioni di ricarica e di rilascio di energia degli impianti idroelettrici di pompaggio (PHS). I risultati mostrano che gli impianti di pompaggio nella zona Nord hanno contribuito a ridurre le emissioni nette di carbonio di circa 471 ktCO2 nel 2018. Tale risultato è in linea con il coefficiente di efficienza medio degli impianti di pompaggio che viene comunemente riportato in letteratura, pari a circa il 74%.
Quattro saggi sul ruolo delle fonti energetiche rinnovabili nel mercato elettrico Italiano
BELTRAMI, FILIPPO
2020
Abstract
This dissertation explores the impact of renewable energy sources (RES) on CO2 emissions related to the production of electricity in the Italian power system. The analysis is based on the evaluation of both the economic and the environmental impact of RES under three main perspectives. The first Chapter provides an assessment of the economic value of RES generation and the connected amount of saved carbon emissions. Through a simulation-based model, the resulting benefits are compared with the cost of the incentive schemes which are aimed at promoting the penetration of RES in the power market. The results show that the annual savings of carbon emissions nationwide amount to nearly 22 MtCO2 whereas the value of CO2 reduction is estimated at 348 million euros. The economic savings only from large and small-scale wind and solar generation in 2018 account for nearly 19 billion euros whereas total welfare is increased by nearly 42%. The second part of this thesis consists of two Chapters, which both examine the techniques for the estimation of marginal emission factors (MEFs) from electricity production. Marginal emission factors are often interpreted as the carbon intensity of the power plants that mostly act on the margin and therefore are able to influence equilibrium prices and quantities in the wholesale power market. The basic techniques for the estimation of CO2 marginal emission factors are carefully examined in the second Chapter. The empirical analysis builds up on previous methods and suggests a novel estimation procedure based on autoregressive fractionally integrated moving average (ARIMA/ARFIMA) time-series components. This methodology is applied for the calculation of the Italian MEF, which is estimated to range between 0.5 and 0.65 tCO2/MWh in 2018, depending on the observed month and season of the year. The third Chapter builds up on the previous one by adding both (1) the specific zonal configuration of the Italian power market together with a novel (2) econometric approach that is able to capture the specific time-series features of the relationship between CO2 emissions and electricity generation. The preliminary unit root and stationarity tests confirm the presence of fractional behaviour in the data, which supports the use of the fractional cointegration vector autoregressive model (FCVAR) framework. The results display the expected heterogeneity, with the MEF varying according to the reference zone and the nature of time-series variables. Sardinia reveals the highest MEF (0.71 tCO2/MWh) while Sicily the lowest (0.07 tCO2/MWh), whereas for the North the MEF is nearly 0.2 tCO2/MWh. The fourth Chapter concludes this thesis with a comprehensive review of the literature on the economic and environmental effects of energy storage. Storage is useful for its role of smoothing the increasing levels of intermittent RES generation, though the literature generally warns on its ambiguous effects in the environment. Some basic OLS estimations based on aggregate data for the zone North reveal that storage generation reduces carbon emissions, mostly during off-peak hours. The estimated MEF from storage results in 0.19 tCO2/MWh. This reveals some effectiveness of storage in its role of crowding out the more carbon-intensive generation from thermoelectric power plants in the area. Furthermore, an extension of the simulation approach presented in the second Chapter allows to compute the net carbon balance arising from charge and discharge operations of pumped hydroelectric storage (PHS). The extended simulation approach indicates that PHS in the zone North contributed to reduce carbon emissions by nearly 471 ktCO2 in 2018. This result is consistent with the assumed coefficient of round-trip efficiency of PHS power plants documented in the literature, which is equal to 74%.File | Dimensione | Formato | |
---|---|---|---|
tesi_Filippo_Beltrami.pdf
accesso aperto
Dimensione
31.69 MB
Formato
Adobe PDF
|
31.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/203191
URN:NBN:IT:UNIPD-203191