This PhD thesis provides an in-depth investigation into the application of control theory methodologies and techniques for complex, real-world systems with a particular emphasis on climate change and air quality. Recognizing the critical role of anthropogenic emissions in environmental degradation, this research develops and validates control strategies that balance emission reductions with socio-economic constraints. Structured as a collection of 10 papers published in international journals and conferences, comprising 5 journal articles and 5 conference papers, this thesis delivers theoretical and applied advancements across three key areas: Monitoring, Modeling, and Control. In the Monitoring section, methods such as optimal sensor placement and virtual sensing are developed to enhance data quality for effective environmental interventions. In the Modeling section, machine learning and system identification techniques are employed to construct predictive models that capture complex, non-linear emission dynamics, validated through rigorous testing with simulations and historical data. Lastly, in the Control section, advanced techniques, including model predictive control (MPC), are implemented for dynamic emissions management and long-term strategy optimization. Environmental, emissions, and socio-economic data are obtained from multiple sources; subsequently they are filtered, normalized, and processed in order to ensure robustness in subsequent phases. Predictive models represent the foundation for the implementation of control strategies that meet regulatory air quality standards, reduce greenhouse gases, and minimize socio-economic impacts. Through the findings presented in the published articles, it can be deduced the importance and potential of combining control theory methods, ranging from model identification processes to optimal control techniques, in order to create comprehensive and effective solutions when dealing with environmental management problems. By providing policy-makers and leaders suitable tools, this thesis contributes to sustainable development goals (SDGs) (SDG 3: good health and well-being, SDG 7: affordable and clean energy, SDG 9: industry, innovation, and infrastructure, SDG 11: sustainable cities and communities, SDG 12: responsible consumption and production, SDG 13: climate action, SDG 17: partnerships for the goals), offering data-driven insights to balance economic, social, and environmental priorities through emissions management. This research positions control theory as a pivotal framework for developing impactful, balanced, and sustainable solutions to environmental challenges.
Questa tesi di dottorato fornisce un'analisi approfondita sull'applicazione di metodologie e tecniche di teoria del controllo per sistemi complessi del mondo reale, con un'enfasi particolare sui cambiamenti climatici e sulla qualità dell'aria. Riconoscendo il ruolo critico delle emissioni antropogeniche nel degrado ambientale, questa ricerca sviluppa e valida strategie di controllo che bilanciano la riduzione delle emissioni con i vincoli socio-economici. Strutturata come una raccolta di 10 articoli pubblicati in riviste e conferenze internazionali, composta da 5 articoli di riviste e 5 articoli di conferenze, questa tesi offre avanzamenti teorici e applicativi in tre aree principali: Monitoraggio, Modellistica e Controllo. Nella sezione Monitoraggio, sono sviluppati metodi come il posizionamento ottimo dei sensori e il sensing virtuale per migliorare la qualità dei dati e supportare interventi ambientali efficaci. Nella sezione Modellistica, vengono impiegate tecniche di apprendimento automatico e di identificazione dei sistemi per costruire modelli predittivi capaci di rappresentare le dinamiche complesse e non lineari delle emissioni, convalidati attraverso test rigorosi con simulazioni e dati storici. Infine, nella sezione Controllo, vengono implementate tecniche avanzate, tra cui il controllo predittivo (MPC), per la gestione dinamica delle emissioni e l’ottimizzazione delle strategie a lungo termine. I dati ambientali, delle emissioni e socio-economici sono raccolti da diverse piattaforme, quindi filtrati, normalizzati e processati per garantire robustezza nelle successive fasi. Questi modelli predittivi costituiscono una base per ideare strategie di controllo che soddisfino gli standard regolatori di qualità dell’aria, riducano i gas serra e minimizzino gli impatti socio-economici. I risultati presentati negli articoli pubblicati evidenziano il potenziale trasformativo dell'integrazione di metodologie di teoria del controllo, che spaziano dall'identificazione dei modelli al controllo ottimo, per affrontare le sfide di gestione ambientale in modo completo ed efficace. Fornendo a politici e leader industriali strumenti pratici e utili, questa tesi contribuisce agli obiettivi di sviluppo sostenibile (SDGs) (SDG 3: buona salute e benessere, SDG 7: energia economica e pulita, SDG 9: industria, innovazione e infrastrutture, SDG 11: città e comunità sostenibili, SDG 12: consumo e produzione responsabili, SDG 13: azione per il clima, SDG 17: partnership per gli obiettivi), offrendo approfondimenti basati sui dati per bilanciare le priorità economiche, sociali e ambientali nella gestione delle emissioni. Questa ricerca posiziona la teoria del controllo come un quadro di riferimento fondamentale per sviluppare soluzioni incisive, equilibrate e sostenibili alle sfide ambientali.
Optimal control techniques for complex real-world systems
SANGIORGI, LUCIA
2025
Abstract
This PhD thesis provides an in-depth investigation into the application of control theory methodologies and techniques for complex, real-world systems with a particular emphasis on climate change and air quality. Recognizing the critical role of anthropogenic emissions in environmental degradation, this research develops and validates control strategies that balance emission reductions with socio-economic constraints. Structured as a collection of 10 papers published in international journals and conferences, comprising 5 journal articles and 5 conference papers, this thesis delivers theoretical and applied advancements across three key areas: Monitoring, Modeling, and Control. In the Monitoring section, methods such as optimal sensor placement and virtual sensing are developed to enhance data quality for effective environmental interventions. In the Modeling section, machine learning and system identification techniques are employed to construct predictive models that capture complex, non-linear emission dynamics, validated through rigorous testing with simulations and historical data. Lastly, in the Control section, advanced techniques, including model predictive control (MPC), are implemented for dynamic emissions management and long-term strategy optimization. Environmental, emissions, and socio-economic data are obtained from multiple sources; subsequently they are filtered, normalized, and processed in order to ensure robustness in subsequent phases. Predictive models represent the foundation for the implementation of control strategies that meet regulatory air quality standards, reduce greenhouse gases, and minimize socio-economic impacts. Through the findings presented in the published articles, it can be deduced the importance and potential of combining control theory methods, ranging from model identification processes to optimal control techniques, in order to create comprehensive and effective solutions when dealing with environmental management problems. By providing policy-makers and leaders suitable tools, this thesis contributes to sustainable development goals (SDGs) (SDG 3: good health and well-being, SDG 7: affordable and clean energy, SDG 9: industry, innovation, and infrastructure, SDG 11: sustainable cities and communities, SDG 12: responsible consumption and production, SDG 13: climate action, SDG 17: partnerships for the goals), offering data-driven insights to balance economic, social, and environmental priorities through emissions management. This research positions control theory as a pivotal framework for developing impactful, balanced, and sustainable solutions to environmental challenges.File | Dimensione | Formato | |
---|---|---|---|
tesi sangiorgi corretta.pdf
accesso aperto
Dimensione
32.23 MB
Formato
Adobe PDF
|
32.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/208361
URN:NBN:IT:UNIBS-208361