The growing focus on environmental sustainability has assumed a central role in the definition of industrial policies and development strategies at the global level. In this context, the circular economy serves as a reference model capable of promoting waste reduction, resource recovery, and the valorization of materials originating from production processes. Within the framework of ecological transition, the reuse of industrial materials emerges as a key strategy to reduce the environmental impact of construction activities. However, the environmental compatibility of these materials must be rigorously evaluated in order to prevent potential negative effects on soil, groundwater, and the surrounding environment. The introduction of the End of Waste concept (European Directive 2008/98/EC) marks a turning point in the approach to waste management, allowing certain waste streams to cease being classified as waste and instead be recognized as products, provided that they meet specific quality and safety criteria. Simultaneously, the classification of materials as by-products, under Article 184-bis of Legislative Decree 152/2006, offers an additional instrument for fostering the responsible use of resources generated by production processes. Nevertheless, the management of such materials in the construction sector requires a systematic approach integrating environmental, technical, and economic assessments. From the perspective of environmental compatibility, the requirements are not clearly delineated; in fact, the EoW criteria specify that “the use of the substance or object will not lead to overall negative impacts on the environment or human health,” while by-product regulations require that “its further use is lawful, meaning that the substance or object meets, for the specific use, all pertinent product, health, and environmental protection requirements and will not lead to overall negative impacts on the environment or human health.” This doctoral thesis examines the characteristics of three types of materials: Recycled Aggregates (RA) from Construction and Demolition Waste (CDW): These are inert materials obtained through the treatment and recovery of debris generated from construction, renovation, and demolition activities involving buildings, infrastructure, and other works. They primarily include concrete, bricks, ceramics, mortars, stones, and asphalt, which undergo crushing, screening, and separation processes to remove impurities and produce reusable materials. Electric Arc Furnace Steel Slag (EAFS): Steel mills currently employ standardized and consolidated procedures for producing pig iron and steel. These processes differ with respect to raw materials used, furnace size, processing duration, and process management, as well as the resulting outputs. In particular, alongside primary raw materials (pig iron or steel), these methods generate by-products such as steelmaking slag. Waste Foundry Sand (WFS): Each year, foundries purchase hundreds of millions of tons of silica sand to form molds and cores that give shape to cast components. After multiple uses, these sands become waste and must be appropriately recovered or disposed of. This dissertation therefore aims to analyze the tools and methodologies employed for assessing the environmental compatibility of materials derived from recovery and reuse processes, with the goal of enabling their safe and effective utilization in the construction sector, especially in unbound applications (i.e., those that do not incorporate binders such as cement or bitumen).
L’attenzione verso la sostenibilità ambientale ha assunto un ruolo centrale nella definizione delle politiche industriali e delle strategie di sviluppo a livello globale. In tale contesto, l’economia circolare rappresenta un modello di riferimento capace di promuovere la riduzione degli sprechi, il recupero delle risorse e la valorizzazione di materiali derivanti da processi produttivi. Nel contesto della transizione ecologica, il riutilizzo di materiali industriali si configura come una soluzione chiave per ridurre l’impatto ambientale delle attività edilizie. Tuttavia, la compatibilità ambientale di questi materiali deve essere rigorosamente valutata al fine di prevenire possibili effetti negativi sul suolo, sulle acque sotterranee e sull’ambiente circostante. L’introduzione del concetto di End of Waste, introdotto dalla Direttiva Europea 2008/98/CE, rappresenta un punto di svolta nell’approccio alla gestione dei materiali di scarto, permettendo a determinati rifiuti di cessare tale qualifica e acquisire lo status di prodotto, purché siano rispettati precisi criteri di qualità e sicurezza. Allo stesso tempo, la qualificazione di materiali come sottoprodotti, conformemente all’articolo 184-bis del D.Lgs. 152/2006, offre un ulteriore strumento per favorire l’utilizzo responsabile di risorse derivanti da processi produttivi. La gestione di tali materiali nel settore delle costruzioni, tuttavia, richiede un approccio sistematico che integri valutazioni ambientali, tecniche ed economiche. Dal punto di vista della compatibilità ambientale questi requisiti non sono delineati in maniera chiara; infatti viene richiesto che “l’utilizzo della sostanza o dell’oggetto non porterà a impatti complessivi negativi sull’ambiente o sulla salute umana” nei requisiti degli EoW o che “l’ulteriore utilizzo è legale, ossia la sostanza o l’oggetto soddisfa, per l’utilizzo specifico, tutti i requisiti pertinenti riguardanti i prodotti e la protezione della salute e dell’ambiente e non porterà a impatti complessivi negativi sull’ambiente o la salute umana” in quelli dei sottoprodotti. La presente tesi di dottorato analizza le caratteristiche di tre tipologie di materiali: • Aggregati Riciclati (AR) da rifiuti da costruzione e demolizione (CDW): materiali inerti derivati dal trattamento e dal recupero di scarti generati durante le attività di costruzione, ristrutturazione e demolizione di edifici, infrastrutture e altre opere. Questi materiali includono principalmente calcestruzzo, mattoni, ceramiche, malte, pietre e asfalti, i quali vengono sottoposti a processi di frantumazione, vagliatura e separazione per rimuovere impurità e ottenere prodotti riutilizzabili. • Scorie di acciaieria con forni ad arco elettrico (EAFS): Attualmente, le acciaierie impiegano procedure consolidate e standardizzate per la produzione di ghisa e acciaio. Questi processi variano in termini di materie prime utilizzate, dimensioni del forno, tempi e gestione del processo, nonché prodotti in uscita risultanti. In particolare, accanto alle materie prime (ghisa o acciaio), da questi metodi di produzione si generano sottoprodotti come le scorie siderurgiche. • Sabbie esauste di fonderia (WFS): Le fonderie acquistano ogni anno centinaia di milioni di sabbie silicee per creare stampi e anime che conferiscono forma ai getti. Queste sabbie, dopo diversi utilizzi, diventano rifiuti che devono essere adeguatamente recuperati o smaltiti. Il presente elaborato si propone quindi di analizzare strumenti e metodologie finalizzati alla valutazione della compatibilità ambientale di materiali derivati da processi di recupero e riutilizzo, con l’obiettivo di consentirne l’impiego sicuro ed efficace nel settore delle costruzioni, con particolare attenzione alle applicazioni non legate (in cui non è presente legante, come cemento o bitume).
Strumenti e Metodologie per la Valutazione della Compatibilità Ambientale di materiali prodotti da Rifiuti Industriali per Utilizzi nel Settore delle Costruzioni
Cioli, Flavio
2025
Abstract
The growing focus on environmental sustainability has assumed a central role in the definition of industrial policies and development strategies at the global level. In this context, the circular economy serves as a reference model capable of promoting waste reduction, resource recovery, and the valorization of materials originating from production processes. Within the framework of ecological transition, the reuse of industrial materials emerges as a key strategy to reduce the environmental impact of construction activities. However, the environmental compatibility of these materials must be rigorously evaluated in order to prevent potential negative effects on soil, groundwater, and the surrounding environment. The introduction of the End of Waste concept (European Directive 2008/98/EC) marks a turning point in the approach to waste management, allowing certain waste streams to cease being classified as waste and instead be recognized as products, provided that they meet specific quality and safety criteria. Simultaneously, the classification of materials as by-products, under Article 184-bis of Legislative Decree 152/2006, offers an additional instrument for fostering the responsible use of resources generated by production processes. Nevertheless, the management of such materials in the construction sector requires a systematic approach integrating environmental, technical, and economic assessments. From the perspective of environmental compatibility, the requirements are not clearly delineated; in fact, the EoW criteria specify that “the use of the substance or object will not lead to overall negative impacts on the environment or human health,” while by-product regulations require that “its further use is lawful, meaning that the substance or object meets, for the specific use, all pertinent product, health, and environmental protection requirements and will not lead to overall negative impacts on the environment or human health.” This doctoral thesis examines the characteristics of three types of materials: Recycled Aggregates (RA) from Construction and Demolition Waste (CDW): These are inert materials obtained through the treatment and recovery of debris generated from construction, renovation, and demolition activities involving buildings, infrastructure, and other works. They primarily include concrete, bricks, ceramics, mortars, stones, and asphalt, which undergo crushing, screening, and separation processes to remove impurities and produce reusable materials. Electric Arc Furnace Steel Slag (EAFS): Steel mills currently employ standardized and consolidated procedures for producing pig iron and steel. These processes differ with respect to raw materials used, furnace size, processing duration, and process management, as well as the resulting outputs. In particular, alongside primary raw materials (pig iron or steel), these methods generate by-products such as steelmaking slag. Waste Foundry Sand (WFS): Each year, foundries purchase hundreds of millions of tons of silica sand to form molds and cores that give shape to cast components. After multiple uses, these sands become waste and must be appropriately recovered or disposed of. This dissertation therefore aims to analyze the tools and methodologies employed for assessing the environmental compatibility of materials derived from recovery and reuse processes, with the goal of enabling their safe and effective utilization in the construction sector, especially in unbound applications (i.e., those that do not incorporate binders such as cement or bitumen).File | Dimensione | Formato | |
---|---|---|---|
Tesi_Cioli.pdf
accesso aperto
Dimensione
5.88 MB
Formato
Adobe PDF
|
5.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/208944
URN:NBN:IT:UNIBS-208944