The depletion of Earth's finite resources, including chemicals, minerals, and fossil fuels, coupled with escalating environmental concerns, has driven the urgent need for a transition towards more sustainable economic and industrial models. This transformation is guided by the principles of the circular economy, which seeks to minimize waste and reduce pollution by promoting product redesign, resource efficiency, and material reuse. At the core of this approach is the eco-design of next-generation products, services, and systems, where materials are reintegrated into either the technical industrial cycle (through reuse and recycling, or the biological cycle, through composting and biodegradation). A notable example is the Cradle to Cradle framework, which advocates for the continual reuse of products while maintaining raw material integrity over multiple life cycles, contrasting with traditional recycling processes that often result in material degradation. This concept also emphasizes the use of non-toxic, environmentally safe chemicals. Biomass has become a critical resource within the circular economy framework, with applications including the production of biofuels, bio-based chemicals, and polymers. Examples of biomass sources include wood and energy crops, such as soy. The rapid increase in the production of fuels and materials derived entirely from biomass highlights its importance, yet this shift has raised concerns regarding soil overexploitation for non-food applications, rising raw material costs (especially in developing nations), loss of biodiversity, soil erosion, and increased susceptibility to pests and diseases. Waste biomass provides a viable solution to these challenges. Derived from sources such as forest residues, agricultural waste, and municipal food scraps, waste biomass offers a low-cost, abundant source of carbohydrates, lipids, and proteins. Globally, it is estimated that hundreds of megatonnes (Mt) of waste biomass are produced annually, with significant potential for on-site processing, making it a promising alternative to dedicated biomass crops. The primary focus of my Ph.D. research is aligned with these circular economy principles, centered on the valorization of waste materials (specifically biomass and plastic waste) into high-value chemicals, sustainable polymeric materials, and zero-waste products. Waste biomass, in particular, holds considerable potential for emerging economies, offering dual benefits in energy production and raw material sourcing without exacerbating land-use conflicts, as it capitalizes on byproducts rather than dedicated agricultural land. In my research, we developed novel protocols for converting biomass waste into valuable chemicals while achieving a zero-waste process. Additionally, we synthesized carbon quantum dots (CQDs) and polyol-polyesters from industrial byproducts using sustainable methods and catalysts, including a scandium-silica-based catalyst for polyol-polyester production. Furthermore, significant efforts were devoted to the development of a rapid, reliable, and environmentally sustainable method for the characterization of simple sugars using gas chromatography-mass spectrometry (GC-MS). This method enhances the future identification of monosaccharides present in biomass, a key raw material for the production of chemicals and innovative materials. In parallel, we explored the valorization of plastic waste through the development of a recyclable core-shell silica-based catalyst with ionic liquid and zinc oxide confined in the core, which effectively depolymerizes plastic waste into simple monomers suitable for reuse in new material synthesis or industrial chemical production. Overall, my research contributes to the transition towards a circular economy, demonstrating how waste materials (whether from biomass or plastics) can be transformed into valuable resources, thereby fostering a more sustainable and resource-efficient industrial system.
L'esaurimento delle risorse della Terra, tra cui sostanze chimiche, minerali e combustibili fossili, unito alle crescenti preoccupazioni ambientali, ha determinato l'urgente necessità di una transizione verso modelli economici e industriali più sostenibili. Questa trasformazione è guidata dai principi dell'economia circolare, che cerca di minimizzare i rifiuti e ridurre l'inquinamento promuovendo la riprogettazione dei prodotti, l'efficienza delle risorse e il riutilizzo dei materiali. Il fulcro di questo approccio è la progettazione ecologica di prodotti, servizi e sistemi di nuova generazione, in cui i materiali vengono reintegrati nel ciclo tecnico-industriale (attraverso il riutilizzo e il riciclaggio, o nel ciclo biologico, attraverso il compostaggio e la biodegradazione). Un esempio significativo è il framework Cradle to Cradle, che sostiene il riutilizzo continuo dei prodotti mantenendo l'integrità delle materie prime in più cicli di vita, in contrasto con i processi di riciclaggio tradizionali che spesso portano alla degradazione dei materiali. Questo concetto enfatizza anche l'uso di sostanze chimiche non tossiche e sicure per l'ambiente. La biomassa è diventata una risorsa cruciale nel quadro dell'economia circolare, con applicazioni che includono la produzione di biocarburanti, prodotti chimici a base biologica e polimeri. Esempi di fonti di biomassa sono il legno e le colture energetiche, come la soia. Il rapido aumento della produzione di combustibili e materiali derivati interamente dalla biomassa ne evidenzia l'importanza, ma questo spostamento ha sollevato preoccupazioni riguardo all'eccessivo sfruttamento del suolo per applicazioni non alimentari, all'aumento dei costi delle materie prime (soprattutto nei Paesi in via di sviluppo), alla perdita di biodiversità, all'erosione del suolo e all'aumento della suscettibilità a parassiti e malattie. La biomassa di scarto rappresenta una valida soluzione a queste sfide. Derivata da fonti quali residui forestali, rifiuti agricoli e scarti alimentari urbani, la biomassa di scarto offre una fonte abbondante e a basso costo di carboidrati, lipidi e proteine. A livello globale, si stima che ogni anno vengano prodotte centinaia di megatonnellate (Mt) di biomassa di scarto, con un potenziale significativo per la lavorazione in loco, che la rende una promettente alternativa alle colture di biomassa dedicate. L'obiettivo principale della mia ricerca di dottorato è allineato con questi principi di economia circolare, incentrato sulla valorizzazione dei materiali di scarto (in particolare biomassa e rifiuti plastici) in prodotti chimici di alto valore, materiali polimerici sostenibili e prodotti a zero rifiuti
Valorizzazione delle biomasse e dei rifiuti per la sintesi di "top value chemicals" e materiali sostenibili
LOSITO, ONOFRIO
2025
Abstract
The depletion of Earth's finite resources, including chemicals, minerals, and fossil fuels, coupled with escalating environmental concerns, has driven the urgent need for a transition towards more sustainable economic and industrial models. This transformation is guided by the principles of the circular economy, which seeks to minimize waste and reduce pollution by promoting product redesign, resource efficiency, and material reuse. At the core of this approach is the eco-design of next-generation products, services, and systems, where materials are reintegrated into either the technical industrial cycle (through reuse and recycling, or the biological cycle, through composting and biodegradation). A notable example is the Cradle to Cradle framework, which advocates for the continual reuse of products while maintaining raw material integrity over multiple life cycles, contrasting with traditional recycling processes that often result in material degradation. This concept also emphasizes the use of non-toxic, environmentally safe chemicals. Biomass has become a critical resource within the circular economy framework, with applications including the production of biofuels, bio-based chemicals, and polymers. Examples of biomass sources include wood and energy crops, such as soy. The rapid increase in the production of fuels and materials derived entirely from biomass highlights its importance, yet this shift has raised concerns regarding soil overexploitation for non-food applications, rising raw material costs (especially in developing nations), loss of biodiversity, soil erosion, and increased susceptibility to pests and diseases. Waste biomass provides a viable solution to these challenges. Derived from sources such as forest residues, agricultural waste, and municipal food scraps, waste biomass offers a low-cost, abundant source of carbohydrates, lipids, and proteins. Globally, it is estimated that hundreds of megatonnes (Mt) of waste biomass are produced annually, with significant potential for on-site processing, making it a promising alternative to dedicated biomass crops. The primary focus of my Ph.D. research is aligned with these circular economy principles, centered on the valorization of waste materials (specifically biomass and plastic waste) into high-value chemicals, sustainable polymeric materials, and zero-waste products. Waste biomass, in particular, holds considerable potential for emerging economies, offering dual benefits in energy production and raw material sourcing without exacerbating land-use conflicts, as it capitalizes on byproducts rather than dedicated agricultural land. In my research, we developed novel protocols for converting biomass waste into valuable chemicals while achieving a zero-waste process. Additionally, we synthesized carbon quantum dots (CQDs) and polyol-polyesters from industrial byproducts using sustainable methods and catalysts, including a scandium-silica-based catalyst for polyol-polyester production. Furthermore, significant efforts were devoted to the development of a rapid, reliable, and environmentally sustainable method for the characterization of simple sugars using gas chromatography-mass spectrometry (GC-MS). This method enhances the future identification of monosaccharides present in biomass, a key raw material for the production of chemicals and innovative materials. In parallel, we explored the valorization of plastic waste through the development of a recyclable core-shell silica-based catalyst with ionic liquid and zinc oxide confined in the core, which effectively depolymerizes plastic waste into simple monomers suitable for reuse in new material synthesis or industrial chemical production. Overall, my research contributes to the transition towards a circular economy, demonstrating how waste materials (whether from biomass or plastics) can be transformed into valuable resources, thereby fostering a more sustainable and resource-efficient industrial system.File | Dimensione | Formato | |
---|---|---|---|
Tesi di Dottorato Onofrio Losito Definitiva.pdf
embargo fino al 28/01/2026
Dimensione
17.29 MB
Formato
Adobe PDF
|
17.29 MB | Adobe PDF | |
Tesi di Dottorato Onofrio Losito Definitiva_1.pdf
embargo fino al 28/01/2026
Dimensione
17.29 MB
Formato
Adobe PDF
|
17.29 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209402
URN:NBN:IT:UNIBA-209402