Climate change poses one of the most significant challenges of our time, driving the need for sustainable solutions to mitigate its effects. Central to this effort is the reduction of reliance on fossil fuels. In this context, hydrogen has emerged as a promising option to decarbonize hard-to-abate sectors, such as transportation, industry, and power generation. However, only “green hydrogen” - produced via water electrolysis using renewable electricity – aligns with net-zero emissions. Among various methods for green hydrogen production, alkaline water electrolysis (AWE) is one of the most mature industrial technologies. Innovation in AWE focus on improving the efficiency, the durability and reducing the costs of the technology. One way to achieve these goals is through highly active catalysts free of critical raw materials (CRM). Historically, platinum-based catalysts have dominated as cathodes materials in AWE, exhibiting the best hydrogen evolution reaction (HER) performance. However, their scarcity and high costs hinder their large-scale application. Consequently, nickel-based electrodes are currently used in AWE, even though they show a lower electrocatalytic activity compared to platinum group materials (PGMs). The electrocatalytic activity of nickel can be enhanced by alloying it with other transition metals, such as molybdenum, or by increasing its surface area. In this regard, Raney nickel electrodes obtained by atmospheric plasma spray (APS) have shown good electrocatalytic properties towards the HER, due to their high surface area and roughness. Nevertheless, it is still not clear how the quality of the Raney nickel powder and the uniformity of powder deposition during the APS process can influence the electrodes’ performance and their mechanical stability. Another challenge is bubble management: hydrogen bubbles forming on the surface of the electrodes hinder their performance by clogging active sites, leading to increased overpotentials. For these reasons, control of the surface morphology and the application of suitable substrates are critical factors in the optimization of Raney nickel electrodes. To address those issues, in this work different types of Ni-Al powders were deposited by means of APS onto a nickel substrate and subjected to heat treatment and chemical leaching of aluminum to obtain Raney nickel electrodes. In the first part of this work, different Ni-Al feedstocks were prepared by blending pure nickel powder with controlled aluminum addition, employed as a pore-forming agent. The Ni-Al blends analyzed are the following: Ni-Al 50-50 wt.%, Ni-Al 70-30 wt.%, and Ni-Al 85-15 wt.%. In the second part of the study, Ni50Al and Ni37Al19Mo powders produced by high energy ball milling (HEBM) were prepared to improve the distribution of the two elements during coating deposition. Two different particle size distributions (PSD), 10-45 μm and 45-106 μm, were analyzed for each powder composition to understand the influence of PSD on the adhesion of the coating to the substrate, its mechanical stability, surface texture, and microstructure. To improve the bubble management of the electrodes, the optimized coatings for each feedstock system were also deposited onto a second substrate: a thin nickel wire mesh, which allows finer apertures than a perforated nickel sheet, but wider than a nickel foam. To our knowledge, this kind of substrate has never been coated and employed as an electrode before. The obtained electrodes were tested in a three-electrode electrochemical cell. Cathodic polarization curves with Tafel extrapolation, cyclic voltammetry, and electrochemical impedance spectroscopy techniques were employed to determine the electrocatalytic activity of the selected electrodes.
Il cambiamento climatico rappresenta una delle sfide più urgenti del nostro tempo, richiedendo soluzioni sostenibili per mitigarne gli effetti. Di centrale importanza è la riduzione della dipendenza dai combustibili fossili. In questo contesto, l’idrogeno si è affermato come una soluzione promettente per decarbonizzare settori difficili da elettrificare, come trasporti, industria e produzione di energia. Tuttavia, solo l’"idrogeno verde" – prodotto tramite elettrolisi dell’acqua alimentata da fonti rinnovabili – soddisfa gli obiettivi di zero emissioni nette. Tra le tecnologie di produzione di idrogeno verde, l’elettrolisi alcalina (AWE) è una delle più mature a livello industriale. Per migliorarne ulteriormente l’efficienza, la durata e ridurne i costi, lo sviluppo di catalizzatori efficienti e privi di materie prime critiche (CRM) è fondamentale. Storicamente, infatti, i catalizzatori a base di platino hanno mostrato le migliori prestazioni rispetto alla reazione di evoluzione dell’idrogeno (HER), ma la loro scarsità e gli alti costi ne limitano l’impiego su larga scala. Essi sono stati sostituiti da elettrodi a base di nichel, sebbene abbiano un’attività elettrocatalitica inferiore. L’attività elettrocatalitica del nichel può essere migliorata alligandolo con metalli di transizione, come il molibdeno, o aumentando la sua superficie specifica. In questo contesto, gli elettrodi di tipo Raney-nichel prodotti mediante Atmospheric Plasma Spray (APS) hanno dimostrato buone proprietà elettrocatalitiche rispetto alla HER, grazie alla loro elevata superficie specifica e rugosità. Tuttavia, non è ancora chiaro come la qualità della polvere utilizzata e la sua omogeneità di deposizione durante il processo APS influenzino le prestazioni elettrocatalitiche e la stabilità meccanica degli elettrodi. Un’altra criticità è la gestione delle bolle di idrogeno che, formandosi sulla superficie degli elettrodi, ne ostacolano le prestazioni, bloccando i siti attivi e aumentando la sovratensione. Pertanto, il controllo della morfologia superficiale e l’uso di substrati adeguati sono fattori determinanti per l’ottimizzazione degli elettrodi di tipo Raney-nichel. Per affrontare queste problematiche, in questo studio sono state depositate diverse tipologie di polveri Ni-Al mediante APS su un substrato di nichel. I rivestimenti così ottenuti sono stati sottoposti a trattamento termico in atmosfera inerte e attivazione chimica per ottenere elettrodi di tipo Raney-nichel con elevata superficie specifica. Nella prima parte dello studio sono state preparate diverse miscele di Ni-Al mescolando polvere di nichel puro con quantità controllate di alluminio, introdotto come formatore di porosità. Le composizioni analizzate sono: Ni-Al 50-50%, Ni-Al 70-30% e Ni-Al 85-15% in peso. Nella seconda parte dello studio sono state depositate polveri Ni50Al e Ni37Al19Mo, prodotte mediante High Energy Ball Milling (HEBM), al fine di migliorare l’uniformità della dispersione dei diversi elementi nel rivestimento. Sono state analizzate due distribuzioni granulometriche (PSD), 10-45 μm e 45-106 μm, per ciascuna composizione, per valutarne l’effetto sull’adesione del rivestimento, sulla stabilità meccanica, e sulla microstruttura. Per migliorare la gestione delle bolle, i rivestimenti ottimizzati per ciascuna composizione sono stati depositati su un secondo substrato: una sottile rete metallica di nichel. A nostra conoscenza, questo tipo di substrato non è mai stato rivestito al fine di essere utilizzato come elettrodo. Gli elettrodi ottenuti sono stati testati in una cella elettrochimica a tre elettrodi, utilizzando curve di polarizzazione catodica con estrapolazione di Tafel, voltammetria ciclica e spettroscopia di impedenza elettrochimica per valutarne l’attività elettrocatalitica.
Trattamenti Superficiali per la produzione di Idrogeno Verde
POPPI, GIULIA
2025
Abstract
Climate change poses one of the most significant challenges of our time, driving the need for sustainable solutions to mitigate its effects. Central to this effort is the reduction of reliance on fossil fuels. In this context, hydrogen has emerged as a promising option to decarbonize hard-to-abate sectors, such as transportation, industry, and power generation. However, only “green hydrogen” - produced via water electrolysis using renewable electricity – aligns with net-zero emissions. Among various methods for green hydrogen production, alkaline water electrolysis (AWE) is one of the most mature industrial technologies. Innovation in AWE focus on improving the efficiency, the durability and reducing the costs of the technology. One way to achieve these goals is through highly active catalysts free of critical raw materials (CRM). Historically, platinum-based catalysts have dominated as cathodes materials in AWE, exhibiting the best hydrogen evolution reaction (HER) performance. However, their scarcity and high costs hinder their large-scale application. Consequently, nickel-based electrodes are currently used in AWE, even though they show a lower electrocatalytic activity compared to platinum group materials (PGMs). The electrocatalytic activity of nickel can be enhanced by alloying it with other transition metals, such as molybdenum, or by increasing its surface area. In this regard, Raney nickel electrodes obtained by atmospheric plasma spray (APS) have shown good electrocatalytic properties towards the HER, due to their high surface area and roughness. Nevertheless, it is still not clear how the quality of the Raney nickel powder and the uniformity of powder deposition during the APS process can influence the electrodes’ performance and their mechanical stability. Another challenge is bubble management: hydrogen bubbles forming on the surface of the electrodes hinder their performance by clogging active sites, leading to increased overpotentials. For these reasons, control of the surface morphology and the application of suitable substrates are critical factors in the optimization of Raney nickel electrodes. To address those issues, in this work different types of Ni-Al powders were deposited by means of APS onto a nickel substrate and subjected to heat treatment and chemical leaching of aluminum to obtain Raney nickel electrodes. In the first part of this work, different Ni-Al feedstocks were prepared by blending pure nickel powder with controlled aluminum addition, employed as a pore-forming agent. The Ni-Al blends analyzed are the following: Ni-Al 50-50 wt.%, Ni-Al 70-30 wt.%, and Ni-Al 85-15 wt.%. In the second part of the study, Ni50Al and Ni37Al19Mo powders produced by high energy ball milling (HEBM) were prepared to improve the distribution of the two elements during coating deposition. Two different particle size distributions (PSD), 10-45 μm and 45-106 μm, were analyzed for each powder composition to understand the influence of PSD on the adhesion of the coating to the substrate, its mechanical stability, surface texture, and microstructure. To improve the bubble management of the electrodes, the optimized coatings for each feedstock system were also deposited onto a second substrate: a thin nickel wire mesh, which allows finer apertures than a perforated nickel sheet, but wider than a nickel foam. To our knowledge, this kind of substrate has never been coated and employed as an electrode before. The obtained electrodes were tested in a three-electrode electrochemical cell. Cathodic polarization curves with Tafel extrapolation, cyclic voltammetry, and electrochemical impedance spectroscopy techniques were employed to determine the electrocatalytic activity of the selected electrodes.File | Dimensione | Formato | |
---|---|---|---|
Tesi definitiva_Poppi Giulia.pdf
embargo fino al 13/05/2028
Dimensione
14.5 MB
Formato
Adobe PDF
|
14.5 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209423
URN:NBN:IT:UNIMORE-209423