Organic electrochemical transistors (OECTs) are devices controlled by electrolyte gating, which leverage the reversible movement of ions into the transistor’s channel to adjust its conductivity. This nanoscale ionic-electronic interaction enables highly efficient gating, allowing biological signals based on ionic flows to be translated into electrical outputs, and electronic signals to be converted back into biological responses. Paired with the typical advantages of organic devices—such as affordability, scalability, chemical tunability, mechanical flexibility, and biocompatibility—OECTs present a versatile platform for bioelectronic applications Chapter 1 provides an overview of OECT operation, materials, and a focus on applications in optical sensing and health monitoring. Chapter 2 presents a study on a customized measurement approach for comparing channel materials in OECTs, addressing the growing interest in OECTs due to advancements in Organic Mixed Ionic-Electronic Conductors (OMIECs) for diverse applications. Stability challenges, particularly in extended measurement cycles, along with the lack of a standardized comparison method in the literature, remain an often underestimated issue. This study proposes a stability assessment method by adapting measurement algorithms to OECTs' electrical characteristics and varying gate voltages, using PEDOT:PSS with different additives as a model. This approach provides a valuable framework for evaluating OECT stability and optimizing material selection for durable applications. Chapter 3 introduces an innovative application in optics. Tunable optical devices are crucial in modern optical engineering, allowing dynamic adjustment of optical parameters to boost functionality and versatility. This study presents a novel method for achieving on-demand, spatially tunable optical properties using organic mixed ion-electron conductors, produced through scalable, cost-efficient processes. By manipulating the bulk electronic conductance of PEDOT:PSS within an OECT setup, we demonstrate the creation of a spatially tunable broadband gradient index profile with multiple degrees of control. This approach opens up a new class of tunable graded index media, with potential applications ranging from optical interconnections to multi-focal devices. In Chapter 4, a study is presented that aims to leverage the benefits of OECTs to develop non-invasive detection and monitoring systems for healthcare applications. Diabetes mellitus, which affects over half a billion people worldwide, requires frequent glucose monitoring to manage abnormal blood glucose levels. While traditional blood-based tests and continuous glucose monitoring (CGM) systems are widely used, they can be uncomfortable and pose risks. This study introduces a non-invasive glucose sensor based on OECTs, designed specifically for saliva glucose measurement. The sensor is functionalized with an enzyme on a carbon-based gate electrode and detects glucose concentrations relevant to both hypo- and hyperglycemic states. The study also proposes a potentiometric system that offers high sensitivity, particularly for detecting small glucose fluctuations in hypoglycemic ranges, making it especially valuable for diabetes management.
I transistor elettrochimici organici (OECT) sono dispositivi a gating elettrolitico, che sfruttano il movimento reversibile degli ioni nel canale del transistor per regolarne la conduttività. Questa interazione ionico-elettronica a scala nanometrica consente un controllo elettronico altamente efficiente, permettendo la traduzione di segnali biologici, basati su flussi ionici, in segnali di uscita elettrici e la conversione di segnali elettronici in risposte biologiche. Associati ai vantaggi tipici dei dispositivi organici, come il basso costo, la scalabilità, l’adattabilità delle proprietà chimiche, la flessibilità meccanica e la biocompatibilità, gli OECT rappresentano una piattaforma versatile per applicazioni bioelettroniche. Il Capitolo 1 fornisce una panoramica sul funzionamento degli OECT, sui materiali e si concentra sulle applicazioni nella sensoristica ottica e nel monitoraggio della salute. Il Capitolo 2 presenta uno studio su un approccio di misurazione personalizzato per il confronto dei materiali del canale negli OECT, affrontando il crescente interesse per gli OECT a seguito dei progressi nei conduttori iono-elettronici organici (Organic Mixed Ionic Electronic Conductors - OMIECs) per applicazioni diverse. Le problematiche di stabilità, particolarmente in cicli di misurazione prolungati, insieme alla mancanza di un metodo di confronto standardizzato nella letteratura, rimangono un problema spesso sottovalutato. Questo studio propone un metodo di valutazione della stabilità adattando un algoritmo di misurazione alle caratteristiche elettriche del singolo OECT in esame, variando le tensioni applicate al gate. Sono stati confrontati OECT con diverse formulazioni dello stesso polimero a verifica del metodo proposto. Questo approccio fornisce un quadro utile per valutare la stabilità degli OECT e ottimizzare la selezione dei materiali per applicazioni che necessitano di prestazioni costanti nel tempo. Il Capitolo 3 introduce un'applicazione innovativa nel campo dell'ottica. I dispositivi ottici regolabili sono fondamentali nell'ingegneria ottica moderna, poiché permettono di adattare dinamicamente i parametri ottici, migliorando la funzionalità e la versatilità. Questo studio presenta un nuovo metodo per ottenere proprietà ottiche spazialmente regolabili a seconda dell’input elettrico ricevuto utilizzando conduttori organici, prodotti attraverso processi scalabili ed economici. Manipolando la conduttività elettronica del prototipico PEDOT:PSS utilizzato come materiale di canale per OECT, dimostriamo la creazione di un profilo a gradiente indicizzato a banda larga spazialmente regolabile, con molteplici gradi di controllo. Questo approccio apre a una nuova classe di mezzi a indice gradato regolabili, con applicazioni che spaziano dalle interconnessioni ottiche ai dispositivi multifocali. Nel Capitolo 4, viene presentato uno studio che mira a sfruttare i benefici degli OECT per sviluppare sistemi di rilevamento e monitoraggio non invasivi per applicazioni sanitarie. Il diabete mellito, che colpisce oltre mezzo miliardo di persone in tutto il mondo, richiede un monitoraggio frequente della glicemia per gestire i livelli anomali di glucosio nel sangue. Sebbene i test tradizionali basati sul sangue e i sistemi di monitoraggio continuo della glicemia (CGM) siano ampiamente utilizzati, possono risultare scomodi e comportare rischi. Questo studio presenta un sensore di glicemia non invasivo basato su OECT, progettato specificamente per la misurazione del glucosio nella saliva. Lo studio propone un sistema potenziometrico che offre alta sensibilità, particolarmente per rilevare piccole fluttuazioni di glucosio nelle gamme ipoglicemiche, rendendolo particolarmente utile per la gestione del diabete.
Design, Development, and Engineering of Organic Electrochemical Transistors for Emerging Applications in Optics and Health Monitoring.
DEMARTIS, VIRGINIA MARIA
2025
Abstract
Organic electrochemical transistors (OECTs) are devices controlled by electrolyte gating, which leverage the reversible movement of ions into the transistor’s channel to adjust its conductivity. This nanoscale ionic-electronic interaction enables highly efficient gating, allowing biological signals based on ionic flows to be translated into electrical outputs, and electronic signals to be converted back into biological responses. Paired with the typical advantages of organic devices—such as affordability, scalability, chemical tunability, mechanical flexibility, and biocompatibility—OECTs present a versatile platform for bioelectronic applications Chapter 1 provides an overview of OECT operation, materials, and a focus on applications in optical sensing and health monitoring. Chapter 2 presents a study on a customized measurement approach for comparing channel materials in OECTs, addressing the growing interest in OECTs due to advancements in Organic Mixed Ionic-Electronic Conductors (OMIECs) for diverse applications. Stability challenges, particularly in extended measurement cycles, along with the lack of a standardized comparison method in the literature, remain an often underestimated issue. This study proposes a stability assessment method by adapting measurement algorithms to OECTs' electrical characteristics and varying gate voltages, using PEDOT:PSS with different additives as a model. This approach provides a valuable framework for evaluating OECT stability and optimizing material selection for durable applications. Chapter 3 introduces an innovative application in optics. Tunable optical devices are crucial in modern optical engineering, allowing dynamic adjustment of optical parameters to boost functionality and versatility. This study presents a novel method for achieving on-demand, spatially tunable optical properties using organic mixed ion-electron conductors, produced through scalable, cost-efficient processes. By manipulating the bulk electronic conductance of PEDOT:PSS within an OECT setup, we demonstrate the creation of a spatially tunable broadband gradient index profile with multiple degrees of control. This approach opens up a new class of tunable graded index media, with potential applications ranging from optical interconnections to multi-focal devices. In Chapter 4, a study is presented that aims to leverage the benefits of OECTs to develop non-invasive detection and monitoring systems for healthcare applications. Diabetes mellitus, which affects over half a billion people worldwide, requires frequent glucose monitoring to manage abnormal blood glucose levels. While traditional blood-based tests and continuous glucose monitoring (CGM) systems are widely used, they can be uncomfortable and pose risks. This study introduces a non-invasive glucose sensor based on OECTs, designed specifically for saliva glucose measurement. The sensor is functionalized with an enzyme on a carbon-based gate electrode and detects glucose concentrations relevant to both hypo- and hyperglycemic states. The study also proposes a potentiometric system that offers high sensitivity, particularly for detecting small glucose fluctuations in hypoglycemic ranges, making it especially valuable for diabetes management.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Demartis_ed_Embargo.pdf
embargo fino al 12/05/2027
Dimensione
9.63 MB
Formato
Adobe PDF
|
9.63 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209661
URN:NBN:IT:UNIBS-209661