On a global scale, 70% of water withdrawals are used in agriculture; furthermore, the population that bases its livelihood on agricultural products is increasing. All this in a context of clear climate change. From these simple considerations it is clear that the management, control and optimization of the distribution of water volumes in agriculture has a fundamental importance. In particular, this consideration is strengthened by the fact that generally the Irrigation Consortia are ancient institutions that manage the distribution of irrigation resources by implementing "equilibrium" solutions resulting from the experience gained over the years, experience that could however not suitable for the future conditions imposed by climate change. A rational and physically based tool that can be of help in optimizing the distribution process is provided by the Saint-Venant Equations which, combined with the role of expert personnel, can make the management of irrigation networks more efficient. This study deals with the implementation of a numerical model that allows to solve the Saint-Venant equations in the one-dimensional formulation for a network of free-surface channels interconnected according to a sufficiently general topology. Since a model that has as its objective the modeling of an irrigation network must integrate, through appropriate internal boundary conditions, some fundamental hydraulic works, with which the regulation of the incoming flows to the irrigation network and of the flows delivered to the secondary channels is implemented, this component is present in the implemented model. Furthermore, the experimental activity carried out in the context of this Thesis has allowed to observe the effect of the growth process of macrophytes on the hydraulic roughness of the channels during the irrigation season. The growth and development of vegetation is mainly governed by solar radiation, the presence of nutrients and the temperature of the water. For this reason, it was decided to couple the implemented hydraulic model with a thermal model that allows modeling the temperature of the canal network for the entire irrigation season. This Thesis shows the steps taken for the implementation and validation of the various components described and their application to the Canale Vacchelli, the most important canal managed by the Consorzio Irrigazioni Cremonesi and one of the most important in northern Italy.
A scala globale, il 70% dei prelievi di acqua è utilizzato in agricoltura; inoltre, la popolazione che basa il proprio sostentamento sui prodotti dell’agricoltura è in aumento. Tutto ciò in un contesto di conclamato cambiamento climatico. Da queste semplici considerazioni appare evidente come la gestione, il controllo e l’ottimizzazione della distribuzione dei volumi idrici in agricoltura abbia un’importanza fondamentale. In particolare, tale considerazione è rafforzata dal fatto che generalmente i Consorzi Irrigui sono istituzioni antiche che gestiscono la distribuzione delle risorse irrigue attuando soluzioni di «equilibrio» frutto dell’esperienza maturata negli anni, esperienza che potrebbe tuttavia rivelarsi non adatta alle condizioni future imposte dal cambiamento climatico. Uno strumento razionale e fisicamente basato che può essere d’aiuto nell’ottimizzazione del processo di distribuzione è fornito dalle Equazioni di Saint-Venant che, affiancato al ruolo del personale esperto, può rendere la gestione delle reti irrigue più efficiente. Il presente studio tratta dell’implementazione di un modello numerico che permetta di risolvere le equazioni di Saint-Venant nella formulazione monodimensionale per una rete di canali a pelo libero interconnessi tra loro secondo una topologia sufficientemente generale. Poiché un modello che abbia come obiettivo la modellazione di una rete irrigua deve integrare, mediante opportune condizioni al contorno interne, alcuni manufatti idraulici fondamentali, con i quali viene attuata la regolazione delle portate in ingresso alla rete irrigua e delle portate erogate ai canali secondari, tale componente costituisce un aspetto presente nel modello implementato. Inoltre, l’attività sperimentale svolta nell’ambito di questa Tesi ha consentito di constatare l’effetto del processo di crescita delle macrofite sulla scabrezza idraulica dei canali nel corso della stagione irrigua. La crescita e sviluppo della vegetazione è governata principalmente dalla radiazione solare, dalla presenza di nutrienti e dalla temperatura dell’acqua. Per tale ragione si è deciso di accoppiare al modello idraulico implementato, un modello termico che permetta di modellare la temperatura del corso d’acqua in tutto il dominio considerato e per l’intera stagione irrigua. Nella Tesi sono mostrati i passi percorsi per l’implementazione e validazione delle varie componenti descritte e l’applicazione delle stesse al Canale Vacchelli, il più importante canale gestito dal Consorzio Irrigazioni Cremonesi e uno dei più importanti in nord Italia.
Implementation of a mathematical model for unsteady flow in irrigation channel networks with application to the case of management of Canale Vacchelli, Consorzio Irrigazioni Cremonesi
Farina, Gabriele
2025
Abstract
On a global scale, 70% of water withdrawals are used in agriculture; furthermore, the population that bases its livelihood on agricultural products is increasing. All this in a context of clear climate change. From these simple considerations it is clear that the management, control and optimization of the distribution of water volumes in agriculture has a fundamental importance. In particular, this consideration is strengthened by the fact that generally the Irrigation Consortia are ancient institutions that manage the distribution of irrigation resources by implementing "equilibrium" solutions resulting from the experience gained over the years, experience that could however not suitable for the future conditions imposed by climate change. A rational and physically based tool that can be of help in optimizing the distribution process is provided by the Saint-Venant Equations which, combined with the role of expert personnel, can make the management of irrigation networks more efficient. This study deals with the implementation of a numerical model that allows to solve the Saint-Venant equations in the one-dimensional formulation for a network of free-surface channels interconnected according to a sufficiently general topology. Since a model that has as its objective the modeling of an irrigation network must integrate, through appropriate internal boundary conditions, some fundamental hydraulic works, with which the regulation of the incoming flows to the irrigation network and of the flows delivered to the secondary channels is implemented, this component is present in the implemented model. Furthermore, the experimental activity carried out in the context of this Thesis has allowed to observe the effect of the growth process of macrophytes on the hydraulic roughness of the channels during the irrigation season. The growth and development of vegetation is mainly governed by solar radiation, the presence of nutrients and the temperature of the water. For this reason, it was decided to couple the implemented hydraulic model with a thermal model that allows modeling the temperature of the canal network for the entire irrigation season. This Thesis shows the steps taken for the implementation and validation of the various components described and their application to the Canale Vacchelli, the most important canal managed by the Consorzio Irrigazioni Cremonesi and one of the most important in northern Italy.File | Dimensione | Formato | |
---|---|---|---|
Phd_thesis_Farina_finale.pdf
accesso aperto
Dimensione
13.97 MB
Formato
Adobe PDF
|
13.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209665
URN:NBN:IT:UNIBS-209665