The analysis of complex gas samples is a major issue in the field of sensing technology, with many applications including environmental monitoring in industrial and urban areas, leaks detection , natural gas analysis for petroleum exploration and biomedical applications. Complexity of these gas sample arises from the interference and interaction between the several gas species in the mixture, which could affect the detection of the target analyte. Due to the coexistence of multiple analytes, high selectivity and sensitivity in complex gas mixtures can represent a non-trivial task. Moreover, these application demand for real-time and in-situ operation as well as a high level of compactness and portability. The state-of-the-art technologies include gas chromatography, electrochemical sensors, semiconductor sensors and optical sensors each offering distinct advantages based on the type of gas being monitored, the operational environment and the specific application. Gas chromatography can provide a sensitive and selective analysis of complex gas mixtures, but do not offer real-time response due to the need for sample preparation, is generally expensive and not suitable for on-field measurements. Semiconductor and electrochemical sensors can provide high compactness, real-time monitoring and high sensitivity. However, they are susceptible to issues like hysteresis, saturation, and drift, with their performance being significantly influenced by environmental factors, including temperature and humidity. Gas spectroscopy utilizing laser sources is a reliable technique that enables highly selective and sensitive detection of target molecules/compounds within mixtures containing several potential interferents in a wide concentration range. Optical detection techniques can be classified into two main categories, based on the physical principles governing the detection process. In direct absorption spectroscopy the emission wavelength of the laser source is tuned along the typical absorption lines of a gas species. This results in a wavelength dependent reduction in the measured signal intensity due to absorption, which can be detected by a suitable photodetector. Tunable diode laser absorption spectroscopy (TDLAS) is one of the most employed techniques to measure the concentration of gas species and reconstruct their absorption profile. A basic TDLAS setup consists of a tunable diode laser light source , an absorbing sample and a photodetector. Conversely, the indirect absorption techniques rely on the detection of non-radiative effects resulting from light absorption, e.g. photoacoustic or photothermal effect. Photoacoustic spectroscopy (PAS) basic principle consists in detecting sound waves induced by gas non-radiative energy relaxation as consequence of infrared modulated light absorption. A transducer is used to convert the photo-induced acoustic wave in an electrical signal proportional to the concentration of the absorbing species. Quartz tuning forks (QTFs) have been employed both as sharply resonant transducers for PAS, namely quartz-enhanced photoacoustic spectroscopy (QEPAS) and recently as infrared detector in TDLAS, namely light induced thermoelastic spectroscopy (LITES).The research activity carried out during my Ph.D. was focused on the development of both QEPAS and LITES-based sensors for the analysis of complex gas mixtures, e.g., hydrogen sulfide, methane and its isotopologues, and hydrogen. In each work, the spectral scenario was thoroughly analysed, and an appropriate spectral range was selected to detect the target molecule while minimizing interference from other gas species. Additionally, for the QEPAS-based sensor, the non-linearities arising from non-spectral cross-correlations between the gas species in the mixture were carefully investigated.
L'analisi di campioni di gas complesse riveste un aspetto cruciale nel campo della sensoristica, con numerose applicazioni, tra cui il monitoraggio ambientale in aree industriali e urbane, la rilevazione di perdite, l'analisi del gas naturale per l'esplorazione petrolifera e applicazioni biomediche. La complessità di questi campioni di gas deriva dall'interferenza e dall'interazione tra le diverse specie gassose nella miscela, che possono influenzare il rilevamento dell'analita target. A causa della coesistenza di molteplici analiti, ottenere alta selettività e sensibilità nelle miscele di gas complesse può rappresentare una sfida non banale. Inoltre, queste applicazioni richiedono monitoraggio in tempo reale e sul campo, oltre a un elevato livello di compattezza e portabilità. Le tecnologie attuali includono la gascromatografia, i sensori elettrochimici, i sensori a semiconduttore e i sensori ottici, ciascuno dei quali offre vantaggi differenti in base al tipo di gas monitorato, all’ambiente operativo e all’applicazione specifica. La gascromatografia può fornire un'analisi sensibile e selettiva delle miscele di gas complesse, ma non offre una risposta in tempo reale a causa della necessità di preparare i campioni; inoltre, è generalmente costosa e inadatta per misurazioni sul campo. I sensori a semiconduttore e quelli elettrochimici possono offrire un'elevata compattezza, monitoraggio in tempo reale e alta sensibilità, ma sono suscettibili a problemi come isteresi, saturazione e deriva, con prestazioni significativamente influenzate da fattori ambientali come temperatura e umidità. Le tecniche ottiche che utilizzano sorgenti laser consentono un rilevamento altamente selettivo e sensibile di molecole/composti all'interno di miscele contenenti potenziali interferenti su un ampio range di concentrazioni. Le tecniche ottiche possono essere classificate in due principali categorie, in base ai principi fisici che regolano il processo di rilevamento. Nella spettroscopia di assorbimento diretto, la lunghezza d'onda di emissione della sorgente laser è scelta in base alle linee di assorbimento tipiche di una specie gassosa. Questo si traduce in una riduzione della intensità del segnale misurato, dipendente dalla lunghezza d'onda a causa dell'assorbimento, rilevabile da un fotorilevatore. La spettroscopia di assorbimento diretto basata sull' utilizzo di laser (TDLAS) è una delle tecniche più impiegate per misurare la concentrazione di specie gassose e ricostruire il loro profilo di assorbimento. Al contrario, le tecniche di assorbimento indiretto si basano sul rilevamento di effetti non radiativi derivanti dall'assorbimento della luce, come l'effetto fotoacustico o fototermico. Il principio base della spettroscopia fotoacustica (PAS) consiste nel rilevare onde sonore indotte dal rilassamento non radiativo del gas come conseguenza dell'assorbimento di luce modulata nell'infrarosso. Un trasduttore viene utilizzato per convertire l'onda acustica foto-indotta in un segnale elettrico proporzionale alla concentrazione della specie assorbente. I diapason in quarzo (QTF) sono stati impiegati sia come trasduttori nella spettroscopia fotoacustica (QEPAS) sia recentemente come fotorilevatori nella TDLAS (LITES). L'attività di ricerca svolta durante il mio dottorato si è concentrata sullo sviluppo di sensori basati su QEPAS e LITES per l'analisi di miscele di gas complesse, quali metano e i suoi isotopi, acido solfidrico e idrogeno. In ciascun lavoro, è stato esaminato a fondo lo scenario spettrale, e si è selezionata un range spettrale adeguato a rilevare la molecola target minimizzando le interferenze da parte di altre specie gassose. Inoltre, per sensori basati sulla tecnica QEPAS, sono state attentamente studiate le non-linearità derivanti da correlazioni non spettrali tra le specie gassose presenti nella miscela.
Nuovi approcci spettroscopici per l'analisi di miscele gassose complesse
OLIVIERI, MARIAGRAZIA
2025
Abstract
The analysis of complex gas samples is a major issue in the field of sensing technology, with many applications including environmental monitoring in industrial and urban areas, leaks detection , natural gas analysis for petroleum exploration and biomedical applications. Complexity of these gas sample arises from the interference and interaction between the several gas species in the mixture, which could affect the detection of the target analyte. Due to the coexistence of multiple analytes, high selectivity and sensitivity in complex gas mixtures can represent a non-trivial task. Moreover, these application demand for real-time and in-situ operation as well as a high level of compactness and portability. The state-of-the-art technologies include gas chromatography, electrochemical sensors, semiconductor sensors and optical sensors each offering distinct advantages based on the type of gas being monitored, the operational environment and the specific application. Gas chromatography can provide a sensitive and selective analysis of complex gas mixtures, but do not offer real-time response due to the need for sample preparation, is generally expensive and not suitable for on-field measurements. Semiconductor and electrochemical sensors can provide high compactness, real-time monitoring and high sensitivity. However, they are susceptible to issues like hysteresis, saturation, and drift, with their performance being significantly influenced by environmental factors, including temperature and humidity. Gas spectroscopy utilizing laser sources is a reliable technique that enables highly selective and sensitive detection of target molecules/compounds within mixtures containing several potential interferents in a wide concentration range. Optical detection techniques can be classified into two main categories, based on the physical principles governing the detection process. In direct absorption spectroscopy the emission wavelength of the laser source is tuned along the typical absorption lines of a gas species. This results in a wavelength dependent reduction in the measured signal intensity due to absorption, which can be detected by a suitable photodetector. Tunable diode laser absorption spectroscopy (TDLAS) is one of the most employed techniques to measure the concentration of gas species and reconstruct their absorption profile. A basic TDLAS setup consists of a tunable diode laser light source , an absorbing sample and a photodetector. Conversely, the indirect absorption techniques rely on the detection of non-radiative effects resulting from light absorption, e.g. photoacoustic or photothermal effect. Photoacoustic spectroscopy (PAS) basic principle consists in detecting sound waves induced by gas non-radiative energy relaxation as consequence of infrared modulated light absorption. A transducer is used to convert the photo-induced acoustic wave in an electrical signal proportional to the concentration of the absorbing species. Quartz tuning forks (QTFs) have been employed both as sharply resonant transducers for PAS, namely quartz-enhanced photoacoustic spectroscopy (QEPAS) and recently as infrared detector in TDLAS, namely light induced thermoelastic spectroscopy (LITES).The research activity carried out during my Ph.D. was focused on the development of both QEPAS and LITES-based sensors for the analysis of complex gas mixtures, e.g., hydrogen sulfide, methane and its isotopologues, and hydrogen. In each work, the spectral scenario was thoroughly analysed, and an appropriate spectral range was selected to detect the target molecule while minimizing interference from other gas species. Additionally, for the QEPAS-based sensor, the non-linearities arising from non-spectral cross-correlations between the gas species in the mixture were carefully investigated.File | Dimensione | Formato | |
---|---|---|---|
TesiDottorato_MariagraziaOlivieri.pdf
accesso aperto
Dimensione
7.19 MB
Formato
Adobe PDF
|
7.19 MB | Adobe PDF | Visualizza/Apri |
TesiDottorato_MariagraziaOlivieri_1.pdf
accesso aperto
Dimensione
7.19 MB
Formato
Adobe PDF
|
7.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209837
URN:NBN:IT:UNIBA-209837