Lignocellulosic biomass primarily consists of carbohydrates, including cellulose and hemicellulose, as well as lignin, a complex phenolic polymer. While the carbohydrate fractions can be efficiently converted into high-value products, processing the lignin fraction remains challenging, often leading to its use primarily as a fuel for energy production. However, lignin is a key renewable source of aromatic compounds. Lignin in biomass has a complex 3D amorphous structure, formed by the combination of three different phenylpropane monomer units: p-coumaryl alcohol, guaiacyl alcohol, and syringyl alcohol. The challenge in developing well-established processes to add value to lignin largely stems from its structural complexity and chemical inertness, particularly in the fractionation and depolymerization stages [1]. In this context, the oxidative cleavage of the various ether and carbon-carbon bonds in native lignin[2] is a significant area of research, as it can produce highly functionalized and valuable building blocks. Therefore, designing efficient and environmentally friendly catalytic processes suitable for carbon-carbon bond cleavage is a crucial research area. Oxovanadium complexes are promising catalysts proposed for the oxidation of dimeric lignin model compounds, using air or oxygen as oxidant. In particular, triphenolamines (TPAs) ligands seems to be among the most promising ones[3]. Catalyst reactivity can be adjusted by modifying the ligand structure[2] and substituents[3]. However, the reported experimental methods for synthesizing these ligands[4] and their corresponding metal complexes lack methodological consistency and often display large variations in reported yields. This PhD thesis centers on a comprehensive study aimed at developing reliable synthetic methodologies for TPA ligands and preparing and characterizing their related vanadium complexes. A secondary focus is the synthesis of novel asymmetrically substituted structures. Achieving precise control over ligand moieties can greatly enhance the tuning capabilities of catalyst properties, potentially altering their selectivity. The resulting metal complexes, characterized through spectroscopy and voltammetry, exhibit notable variations in key properties, such as reduction potential and visible absorption. This work forms the basis for a set of catalytic tests aimed at the oxidative cleavage of C-C and C-O bonds in dimeric lignin model compounds. References [1] Mussatto, S. I. (Ed.). (2016). Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier. [2] Vangeel, Thijs, et al. Lignin Chemistry (2020): 53-68. [3] Amadio, Emanuele, et al. Advanced Synthesis & Catalysis 360.17 (2018): 3286-3296. [4] Groysman, Stanislav, et al. Advanced Synthesis & Catalysis 347.2‐3 (2005): 409-415.
La biomassa lignocellulosica è costituita principalmente da carboidrati, tra cui i più importanti sono la cellulosa e l’emicellulosa, e dalla lignina, un polimero complesso a base fenolica. La frazione dei carboidrati viene efficientemente convertita in prodotti ad alto valore aggiunto, mentre processare la frazione ligninica resta particolarmente complesso, portando frequentemente al suo impiego come combustibile per la produzione di energia. Tuttavia, la lignina è la fonte rinnovabile di composti aromatici più abbondante. La lignina ha una struttura 3D amorfa estremamente complessa, generata dalla combinazione di tre unità monomeriche differenti: alcol p-cumarilico, alcol guaiacilico e alcol siringilico. La sfida nello sviluppare dei processi affidabili per ottenere prodotti a valore aggiunto dalla lignina deriva ampiamente dalla sua complessità strutturale e dall’inerzia chimica, specialmente per quel che riguarda le fasi di depolimerizzazione e frazionamento [1]. In questo senso, la scissione ossidativa sia dei legami eterei che dei legami carbonio-carbonio nella lignina tal quale [2] è un argomento molto studiato, poiché permette di produrre substrati altamente funzionalizzati di grande valore economico. Dunque, lo sviluppo di sistemi catalitici efficienti e sostenibili per la rottura dei legami carbonio-carbonio è cruciale. I complessi di vanadio ossido sono catalizzatori promettenti per l’ossidazione di composti modello, utilizzando aria o ossigeno come ossidante. In particolare, i leganti trifenolamminici (TPAs) sembrano essere tra i più promettenti [3]. La reattività di questi catalizzatori può essere regolata modificando la struttura del legante [2] ed i suoi sostituenti [3]. Tuttavia, le procedure sperimentali riportate per la sintesi di questi leganti [4] e dei corrispondenti complessi metallici sono metodologicamente inconsistenti e spesso le rese ottenute risultano molto diverse da quelle riportate. Questa tesi di dottorato si focalizza sullo studio dettagliato di percorsi sintetici alternativi per l’ottenimento di leganti TPA e sulla preparazione e caratterizzazione dei corrispettivi complessi di vanadio(V). Uno scopo secondario è quello di ottenere leganti asimmetrici permettendo un controllo molto più fine delle proprietà del catalizzatore, modificandone potenzialmente la selettività. I complessi metallici ottenuti sono stati caratterizzati attraverso spettroscopie e voltammetria, mostrando differenze significative in proprietà chiave come il potenziale di riduzione e l’assorbimento nel visibile. Questo lavoro costituisce le basi per una serie di studi catalitici mirati alla scissione ossidativa di legami C-C e C-O in composti dimerici modello. References [1] Mussatto, S. I. (Ed.). (2016). Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier. [2] Vangeel, Thijs, et al. Lignin Chemistry (2020): 53-68. [3] Amadio, Emanuele, et al. Advanced Synthesis & Catalysis 360.17 (2018): 3286-3296. [4] Groysman, Stanislav, et al. Advanced Synthesis & Catalysis 347.2‐3 (2005): 409-415.
Depolimerizzazione della Lignina e valorizzazione per ottenere Biomateriali
ANDERLINI, BIAGIO
2025
Abstract
Lignocellulosic biomass primarily consists of carbohydrates, including cellulose and hemicellulose, as well as lignin, a complex phenolic polymer. While the carbohydrate fractions can be efficiently converted into high-value products, processing the lignin fraction remains challenging, often leading to its use primarily as a fuel for energy production. However, lignin is a key renewable source of aromatic compounds. Lignin in biomass has a complex 3D amorphous structure, formed by the combination of three different phenylpropane monomer units: p-coumaryl alcohol, guaiacyl alcohol, and syringyl alcohol. The challenge in developing well-established processes to add value to lignin largely stems from its structural complexity and chemical inertness, particularly in the fractionation and depolymerization stages [1]. In this context, the oxidative cleavage of the various ether and carbon-carbon bonds in native lignin[2] is a significant area of research, as it can produce highly functionalized and valuable building blocks. Therefore, designing efficient and environmentally friendly catalytic processes suitable for carbon-carbon bond cleavage is a crucial research area. Oxovanadium complexes are promising catalysts proposed for the oxidation of dimeric lignin model compounds, using air or oxygen as oxidant. In particular, triphenolamines (TPAs) ligands seems to be among the most promising ones[3]. Catalyst reactivity can be adjusted by modifying the ligand structure[2] and substituents[3]. However, the reported experimental methods for synthesizing these ligands[4] and their corresponding metal complexes lack methodological consistency and often display large variations in reported yields. This PhD thesis centers on a comprehensive study aimed at developing reliable synthetic methodologies for TPA ligands and preparing and characterizing their related vanadium complexes. A secondary focus is the synthesis of novel asymmetrically substituted structures. Achieving precise control over ligand moieties can greatly enhance the tuning capabilities of catalyst properties, potentially altering their selectivity. The resulting metal complexes, characterized through spectroscopy and voltammetry, exhibit notable variations in key properties, such as reduction potential and visible absorption. This work forms the basis for a set of catalytic tests aimed at the oxidative cleavage of C-C and C-O bonds in dimeric lignin model compounds. References [1] Mussatto, S. I. (Ed.). (2016). Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier. [2] Vangeel, Thijs, et al. Lignin Chemistry (2020): 53-68. [3] Amadio, Emanuele, et al. Advanced Synthesis & Catalysis 360.17 (2018): 3286-3296. [4] Groysman, Stanislav, et al. Advanced Synthesis & Catalysis 347.2‐3 (2005): 409-415.File | Dimensione | Formato | |
---|---|---|---|
Tesi Definitiva Anderlini Biagio.pdf
accesso aperto
Dimensione
16.85 MB
Formato
Adobe PDF
|
16.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209863
URN:NBN:IT:UNIMORE-209863