CYFIP2 is a crucial protein involved in the regulation of actin dynamics, which are essential for various cellular processes, including cell division, motility, and the formation of specialized structures such as dendritic spines and axonal growth cones in neurons. CYFIP2’s dual role as a WRC member and an interactor of FMRP highlights its significance in cellular physiology and neurological processes. Actin dynamics regulated by CYFIP2 are particularly important in neurons, where they contribute to dendritic spine formation critical for synaptic plasticity and the development of axonal growth cones, which are essential for establishing and maintaining neural circuits. These roles explain why alterations in CYFIP2 are closely linked to neurological disorders. In 2018, Nakashima and colleagues identified three de novo mutations in the CYFIP2 gene: R87C, R87L, and R87P. These mutations were associated with severe neurodevelopmental disorders, including Early-Onset Infantile Encephalopathies and West Syndrome. Among these, the R87C mutation has been shown to confer the worst prognosis in patients and is also the most frequently observed. The aim of this thesis was the characterization of a series of morphological/functional parameters in different cellular models, which can be altered by this mutation. Our results initially demonstrated that the mutated protein has a reduced expression compared to WT, and that this reduced expression is due to an increase in degradation. Subsequently, to further investigate the role of the R87C mutation, we used a cellular model represented by the SHSY-5Y neuroblastoma cell line. Initially, we deleted the CYFIP2 gene using the CRISPR-Cas9 technique, generating a KO cell line. Subsequently, we overexpressed both CYFIP2 and R87C in the KO lines through lentiviral transduction. The overexpression of both variants restored the morphological phenotype observed in the KO cells. The results in this model highlight morphological/functional differences related to certain parameters that are a consequence of actin dynamics and cytoskeletal reorganization. These data suggest that the mutated protein alters actin dynamics.Since the CYFIP2 protein is primarily expressed in neurons, we investigated the role of the R87C mutation during neuronal development. To this end, we used a well-established model of neuronal differentiation in SH-SY5Y cells. Our results clearly show that cells lacking the CYFIP2 gene (KO) lose the ability to develop a typical neuron-like morphology after differentiation, while the overexpression of the CYFIP2 protein restores this differentiation capacity. In contrast, the mutation somehow impairs this process, as the mutated cells exhibit reduced neurite length or no neurite at all compared to cells expressing CYFIP2. We used primary rodent neuronal cultures to investigate the effects of the R87C mutation on neuronal morphology and synaptogenesis. Endogenous of both CYFIP1 and CYFIP2 expression was reduced with specific shRNAs, and the neurons were transduced with lentiviral vectors expressing CYFIP2 or the R87C mutation. During neuronal maturation, we observed significant differences between neurons expressing the R87C mutation and those expressing CYFIP2, including fewer branches, shorter axon length, and lower complexity. Additionally, we found a drastic reduction in dendritic spine frequency in cells expressing the mutated protein, suggesting a role in impaired synaptogenesis. These data, considered together, suggest that the pathogenicity of the mutated protein could be attributed to several factors. First, the reduction in its expression due to degradation. Second, the modulation of processes involved in actin dynamics, which affect cellular morphology as well as differentiation and spine formation. However, the mechanisms underlying these observed alterations remain unknown.
CYFIP2 è una proteina originariamente identificata come membro di WRC e come interattore di FMRP. Ha un importante ruolo nelle dinamiche dell’actina che a sua volta sono implicate in una serie di processi biologici nella fisiologia cellulare. Nella sequenza genica che codifica questa proteina sono state riscontrate un serie di mutazioni associate all’insorgenza di diverse patologie neurologiche. Nel 2018 Nakashima e colleghi hanno scoperto in particolare tre mutazioni de-novo (R87C, R87L, R87P) in questa sequenza, che sono state riscontrate in una serie di patologie di neuro-sviluppo come le Encefalopatie Infantili ad Esordio Precoce, nonché la West Sindrome.L’oggetto del nostro studio è stata la mutazione R87C la quale conferisce la prognosi peggiore nei pazienti ed è anche la più frequente. L’obiettivo di questa tesi è stato la caratterizzazione di un serie di parametri morfologici/funzionali in diversi modelli cellulari, che possono essere alterati da questa mutazione. I nostri risultati hanno dimostrato che la proteina mutata ha un’espressione ridotta rispetto a WT, e che questa ridotta espressione potrebbe essere dovuta a un aumento di degradazione. Successivamente, per approfondire il ruolo della proteina CYFIP2 e anche quella della mutazione di R87C, abbiamo usato un modello cellulare di neuroblastoma SHSY-5Y. Inizialmente abbiamo eliminato il gene CYFIP2 con CRISPR-Cas9, generando una linea cellulare KO per il gene di interesse. Successivamente, abbiamo sovra espresso sia CYFIP2 che R87C nelle linee KO tramite trasduzione lentivirale. La sovra espressione di entrambe le varianti ha ripristinato il fenotipo morfologico osservato nelle cellule KO. I risultati in questo modello evidenziano differenze morfologiche/funzionali, che riguardano alcuni parametri che sono conseguenza di dinamiche dell’actina. Questi dati suggeriscono che la proteina mutata altera le dinamiche dell’actina. Poiché la proteina CYFIP2 è espressa principalmente nei neuroni, abbiamo indagato il ruolo della mutazione R87C durante lo sviluppo neuronale. A tal fine, abbiamo utilizzato un modello di differenziamento neuronale in cellule SH-SY5Y. I nostri risultati dimostrano che le cellule prive del gene CYFIP2 (KO) perdono la capacità di sviluppare una tipica morfologia simil-neuronale dopo il differenziamento, mentre la sovra-espressione della proteina CYFIP2 ripristina tale capacità di differenziare. Invece la mutazione impedisce in qualche modo questo processo. Per approfondire il nostro studio, abbiamo uttilizato le colture neuronali primarie di roditori. L'espressione endogena di CYFIP1 e CYFIP2 è stata ridotta mediante l'uso di shRNA specifici, e le colture cellulari sono state trasdotte con vettori lentivirali che esprimono sia la proteina CYFIP2 che la mutazione R87C. Durante il processo di maturazione neuronale, abbiamo esaminato parametri morfologici relativi allo sviluppo degli assoni. Abbiamo osservato una differenza statisticamente significativa tra i neuroni che esprimono la mutazione R87C e quelli che esprimono la proteina CYFIP2, in termini di numero di ramificazioni, lunghezza totale e indice di complessità degli assoni analizzati. In aggiunta, abbiamo utilizzato il nostro modello di colture primarie ippocampali per indagare se la mutazione possa essere coinvolta nel processo di sinaptogenesi. I nostri risultati rivelano che la frequenza delle spine sinaptiche è drasticamente ridotta nelle cellule che esprimono la proteina mutata. Questi dati valutati nel loro insieme suggeriscono che la patogenicità di questa proteina mutata potrebbe essere data da diversi fattori. In primis la riduzione della sua espressione dovuta alla degradazione. In secondo luogo, la modulazione di processi implicati nelle dinamiche dell’actina che impattano la morfologia cellulare nonché differenziamento e spinogensi. Tuttavia, i meccanismi di queste alterazioni osservate rimangono ignote.
Unravelling the role of CYFIP2 and R87C mutation in "in vitro" neurodevelopment
NDOJ, ELONA
2025
Abstract
CYFIP2 is a crucial protein involved in the regulation of actin dynamics, which are essential for various cellular processes, including cell division, motility, and the formation of specialized structures such as dendritic spines and axonal growth cones in neurons. CYFIP2’s dual role as a WRC member and an interactor of FMRP highlights its significance in cellular physiology and neurological processes. Actin dynamics regulated by CYFIP2 are particularly important in neurons, where they contribute to dendritic spine formation critical for synaptic plasticity and the development of axonal growth cones, which are essential for establishing and maintaining neural circuits. These roles explain why alterations in CYFIP2 are closely linked to neurological disorders. In 2018, Nakashima and colleagues identified three de novo mutations in the CYFIP2 gene: R87C, R87L, and R87P. These mutations were associated with severe neurodevelopmental disorders, including Early-Onset Infantile Encephalopathies and West Syndrome. Among these, the R87C mutation has been shown to confer the worst prognosis in patients and is also the most frequently observed. The aim of this thesis was the characterization of a series of morphological/functional parameters in different cellular models, which can be altered by this mutation. Our results initially demonstrated that the mutated protein has a reduced expression compared to WT, and that this reduced expression is due to an increase in degradation. Subsequently, to further investigate the role of the R87C mutation, we used a cellular model represented by the SHSY-5Y neuroblastoma cell line. Initially, we deleted the CYFIP2 gene using the CRISPR-Cas9 technique, generating a KO cell line. Subsequently, we overexpressed both CYFIP2 and R87C in the KO lines through lentiviral transduction. The overexpression of both variants restored the morphological phenotype observed in the KO cells. The results in this model highlight morphological/functional differences related to certain parameters that are a consequence of actin dynamics and cytoskeletal reorganization. These data suggest that the mutated protein alters actin dynamics.Since the CYFIP2 protein is primarily expressed in neurons, we investigated the role of the R87C mutation during neuronal development. To this end, we used a well-established model of neuronal differentiation in SH-SY5Y cells. Our results clearly show that cells lacking the CYFIP2 gene (KO) lose the ability to develop a typical neuron-like morphology after differentiation, while the overexpression of the CYFIP2 protein restores this differentiation capacity. In contrast, the mutation somehow impairs this process, as the mutated cells exhibit reduced neurite length or no neurite at all compared to cells expressing CYFIP2. We used primary rodent neuronal cultures to investigate the effects of the R87C mutation on neuronal morphology and synaptogenesis. Endogenous of both CYFIP1 and CYFIP2 expression was reduced with specific shRNAs, and the neurons were transduced with lentiviral vectors expressing CYFIP2 or the R87C mutation. During neuronal maturation, we observed significant differences between neurons expressing the R87C mutation and those expressing CYFIP2, including fewer branches, shorter axon length, and lower complexity. Additionally, we found a drastic reduction in dendritic spine frequency in cells expressing the mutated protein, suggesting a role in impaired synaptogenesis. These data, considered together, suggest that the pathogenicity of the mutated protein could be attributed to several factors. First, the reduction in its expression due to degradation. Second, the modulation of processes involved in actin dynamics, which affect cellular morphology as well as differentiation and spine formation. However, the mechanisms underlying these observed alterations remain unknown.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottoratto E.pdf
accesso aperto
Dimensione
3.24 MB
Formato
Adobe PDF
|
3.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/209975
URN:NBN:IT:UNIBS-209975