The transition to sustainable energy production necessitates the development and implementation of eco-friendly materials and technologies to enable the large-scale usage of renewable energy sources. Among these, solar energy emerges as a pivotal renewable resource, driving significant research efforts toward cost-effective and environmentally sustainable methods for employing and converting solar radiation into electrical power. This PhD Thesis focuses on advancing next-generation photovoltaic (PV) technologies by exploring sustainable alternatives to traditional silicon-based systems, with particular emphasis on organic-inorganic hybrid semiconductors known as Metal Halide Perovskites (MHPs). Indeed, MHP-based solar cells have achieved impressive progress, with power conversion efficiencies increasing from 3.8% in 2009 to 26.7% by 2024, making them the fastest-evolving solar cell technology to date. MHPs, of general formula ABX3, are characterized by a three-dimensional framework in which A cations (e.g., CH3NH3⁺, [CH(NH2)2]⁺, or Cs⁺) reside in cavities formed by corner-sharing [B(X1/2)6]⁻ octahedra, where B is typically Pb2+, Ge2+, or Sn2+, and X is Cl⁻, Br⁻, or I⁻. These materials (and, specifically, [CH3NH3]PbI3 or MAPI) exhibit exceptional optoelectronic properties, such as tunable bandgaps, high absorption coefficients, superior charge carrier mobilities, and remarkable defect tolerance, making them a cornerstone for further development within the energy materials research community. Despite these advancements, MHPs face critical challenges, including lead toxicity, usage of hazardous solvents during processing, and limited thermal and chemical stability. This Ph.D. Thesis addresses these challenges by investigating sustainable alternatives to key components in MHP systems, such as non-toxic and cost-effective B-site metals, environmentally friendly solvents, and innovative green additives. In particular, two different aspects are aiming at stabilizing thin film MAPI formulation in a single step deposition process: ii) the partial substitution of lead with tin, in combination with non-toxic solvents in two-steps blade-coating deposition processes. The effects of complex perovskite formulations — such as variations in crystal domain size, strain and microstrain, crystallographic orientation, and bandgap properties — are investigated in the context of developing scalable printing techniques. Throughout this research, novel perovskite compositions and processing methodologies are explored, alongside the fabrication and optimization of solar cell devices. XRD, GIWAXS, optical spectroscopy, AFM and interferometric microscopy techniques supported the in-depth films characterization in correlation studies to the device performances. This comprehensive approach aims to advance the scalability and commercialization of perovskite-based PV technologies while reducing toxicity at multiple levels.
La transizione verso la produzione di energia sostenibile richiede lo sviluppo e l'implementazione di materiali e tecnologie eco-compatibili per consentire l'utilizzo su larga scala di fonti di energia rinnovabili. Tra queste, l'energia solare emerge come una risorsa rinnovabile fondamentale, che spinge a compiere notevoli sforzi di ricerca verso metodi economici ed ecologicamente sostenibili per convertire la radiazione solare in energia elettrica. Questa tesi di dottorato si concentra sull'avanzamento delle tecnologie fotovoltaiche di nuova generazione, esplorando alternative sostenibili ai sistemi tradizionali basati sul silicio, con particolare attenzione ai semiconduttori ibridi organici-inorganici noti come perovskiti ad alogenuri metallici (MHPs). In effetti, le celle solari a base di MHPs hanno compiuto progressi impressionanti, con un'efficienza di conversione della potenza che è passata dal 3,8% nel 2009 al 26,7% entro il 2024, rendendole la tecnologia di celle solari a più rapida evoluzione fino ad oggi. Le MHPs, di formula generale ABX3, sono caratterizzate da una struttura tridimensionale in cui i cationi A (ad esempio, CH3NH3⁺, [CH(NH2)2]⁺, o Cs⁺) risiedono in cavità formate da ottaedri [B(X1/2)6]- che condividono gli angoli, dove B è tipicamente Pb2+, Ge2+, o Sn2+, e X è Cl-, Br-, o I-. Questi materiali (e, nello specifico, [CH3NH3]PbI3 o MAPI) presentano eccezionali proprietà optoelettroniche, come bandgap modificabili, elevati coefficienti di assorbimento, mobilità superiore dei portatori di carica e notevole tolleranza ai difetti, che li rendono una pietra miliare per ulteriori sviluppi nella comunità di ricerca sui materiali energetici. Nonostante questi progressi, le MHPs devono affrontare sfide critiche, tra cui la tossicità del piombo, l'uso di solventi pericolosi durante la lavorazione e la limitata stabilità termica e chimica. Questa tesi di dottorato affronta queste sfide studiando alternative sostenibili per i componenti chiave dei sistemi MHPs, come metalli B-site non tossici ed economici, solventi ecologici e additivi ecologici innovativi. In particolare, due diversi aspetti mirano a stabilizzare la formulazione di film sottili MAPI in un processo di deposizione in un unico passaggio: ii) la parziale sostituzione del piombo con lo stagno, in combinazione con solventi non tossici e processi di deposizione per Blade-coating in due step. Gli effetti di formulazioni complesse di perovskite - come le variazioni nelle dimensioni dei domini cristallini, la deformazione e la microdeformazione, l'orientamento cristallografico e le proprietà del bandgap - sono studiati nel contesto dello sviluppo di tecniche di stampa scalabili. Nel corso di questa ricerca, vengono esplorate nuove composizioni di perovskite e metodologie di lavorazione, oltre alla fabbricazione e all'ottimizzazione di dispositivi per celle solari. Le tecniche di XRD, GIWAXS, spettroscopia ottica, AFM e microscopia interferometrica hanno supportato la caratterizzazione approfondita dei film negli studi di correlazione con le prestazioni dei dispositivi. Questo approccio completo mira a far progredire la scalabilità e la commercializzazione delle tecnologie fotovoltaiche basate sulla perovskite, riducendo al contempo la tossicità in più livelli.
Materiali perovskitici per celle fotovoltaiche ad alta efficienza e basso impatto ambientale
TAVORMINA, FILIPPO
2025
Abstract
The transition to sustainable energy production necessitates the development and implementation of eco-friendly materials and technologies to enable the large-scale usage of renewable energy sources. Among these, solar energy emerges as a pivotal renewable resource, driving significant research efforts toward cost-effective and environmentally sustainable methods for employing and converting solar radiation into electrical power. This PhD Thesis focuses on advancing next-generation photovoltaic (PV) technologies by exploring sustainable alternatives to traditional silicon-based systems, with particular emphasis on organic-inorganic hybrid semiconductors known as Metal Halide Perovskites (MHPs). Indeed, MHP-based solar cells have achieved impressive progress, with power conversion efficiencies increasing from 3.8% in 2009 to 26.7% by 2024, making them the fastest-evolving solar cell technology to date. MHPs, of general formula ABX3, are characterized by a three-dimensional framework in which A cations (e.g., CH3NH3⁺, [CH(NH2)2]⁺, or Cs⁺) reside in cavities formed by corner-sharing [B(X1/2)6]⁻ octahedra, where B is typically Pb2+, Ge2+, or Sn2+, and X is Cl⁻, Br⁻, or I⁻. These materials (and, specifically, [CH3NH3]PbI3 or MAPI) exhibit exceptional optoelectronic properties, such as tunable bandgaps, high absorption coefficients, superior charge carrier mobilities, and remarkable defect tolerance, making them a cornerstone for further development within the energy materials research community. Despite these advancements, MHPs face critical challenges, including lead toxicity, usage of hazardous solvents during processing, and limited thermal and chemical stability. This Ph.D. Thesis addresses these challenges by investigating sustainable alternatives to key components in MHP systems, such as non-toxic and cost-effective B-site metals, environmentally friendly solvents, and innovative green additives. In particular, two different aspects are aiming at stabilizing thin film MAPI formulation in a single step deposition process: ii) the partial substitution of lead with tin, in combination with non-toxic solvents in two-steps blade-coating deposition processes. The effects of complex perovskite formulations — such as variations in crystal domain size, strain and microstrain, crystallographic orientation, and bandgap properties — are investigated in the context of developing scalable printing techniques. Throughout this research, novel perovskite compositions and processing methodologies are explored, alongside the fabrication and optimization of solar cell devices. XRD, GIWAXS, optical spectroscopy, AFM and interferometric microscopy techniques supported the in-depth films characterization in correlation studies to the device performances. This comprehensive approach aims to advance the scalability and commercialization of perovskite-based PV technologies while reducing toxicity at multiple levels.File | Dimensione | Formato | |
---|---|---|---|
Tesi_PhD_Tavormina_Definitive_12-05-2025.pdf
embargo fino al 21/11/2025
Dimensione
19.31 MB
Formato
Adobe PDF
|
19.31 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/210676
URN:NBN:IT:UNINSUBRIA-210676