This thesis explores the optimization and characterization of Wire Arc Additive Manufacturing (WAAM) for low-carbon steel, aiming to enhance deposition quality, geometrical precision, and material properties. Preliminary experiments established a processing window by analyzing the influence of key process parameters power, travel speed, wire feed speed, and stand-off distance on bead geometry and material properties. Advanced methodologies, such as force air cooling, in-process data monitoring and microstructural analysis, were utilized to evaluate the thermal and mechanical behavior of WAAM-fabricated components.

Wire-arc additive manufacturing: Process optimization, advancements, in-process data monitoring, and material characterization

YANALA, PHANIDRA BABU
2025

Abstract

This thesis explores the optimization and characterization of Wire Arc Additive Manufacturing (WAAM) for low-carbon steel, aiming to enhance deposition quality, geometrical precision, and material properties. Preliminary experiments established a processing window by analyzing the influence of key process parameters power, travel speed, wire feed speed, and stand-off distance on bead geometry and material properties. Advanced methodologies, such as force air cooling, in-process data monitoring and microstructural analysis, were utilized to evaluate the thermal and mechanical behavior of WAAM-fabricated components.
9-mag-2025
Inglese
PAOLETTI, ALFONSO
GALLUCCI, KATIA
LAMBIASE, FRANCESCO
Università degli Studi dell'Aquila
File in questo prodotto:
File Dimensione Formato  
YANALA-PhD thesis to print.pdf

accesso aperto

Dimensione 11.12 MB
Formato Adobe PDF
11.12 MB Adobe PDF Visualizza/Apri
YANALA-PhD thesis to print_1.pdf

accesso aperto

Dimensione 11.12 MB
Formato Adobe PDF
11.12 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/210808
Il codice NBN di questa tesi è URN:NBN:IT:UNIVAQ-210808