Low-temperature plasma (LTP) is proposed as a new green technology for safe and sustainable agriculture. Atmospheric air plasma consists of electrons, ions, radicals, stable and short living products, such as reactive oxygen and nitrogen species (RONS), and ultraviolet radiation. In the present Thesis, the effects of both direct and indirect applications of atmospheric air LTP for microbial inactivation were investigated. The effectiveness of Volume Dielectric Barrier Discharge (VDBD) was evaluated on the direct inhibition of conidial germination in five different species of phytopathogenic fungi, various discharge conditions, and medium composition. The inhibitory effect was influenced by the applied voltage, which mainly reflects the uniformity of the treatment, increased with treatment duration and decreased with fungal spore complexity. Inhibition on different agarized media containing dextrose or malt extract was influenced by the complexity and composition of the medium. These differences translated into a different response to the applied electrical field, influencing plasma generation and uniformity. Differences among different species could be related to the fungal cell wall thickness, structure and composition. In this work, albino mutants of Botrytis cinerea and Aspergillus carbonarius were used to explore the protective role of fungal melanin on sensitivity to plasma exposure, with mutants showing higher sensitivity to treatments compared to the melanized wild-type strains. The effectiveness of VDBD in decontamination activity was also tested on barley seeds artificially inoculated with different Fusarium species. Inoculated seeds were exposed to a barrier discharge in synthetic air, humid air, and pure oxygen, at different exposure times, in the attempt to investigate the better requisite for seed decontamination while preserving seed germinability/viability. Applications of Plasma Activated Water (PAW) has gained more interest showing its wide and easily usage in agriculture and agrifood industry. PAW generated through SDBD was used as decontaminating medium against fungi and bacteria. Physicochemical properties of PAW were assessed in terms of concentration of reactive species, pH, and ORP (Oxidation-Reduction Potential). The concentration of reactive species and acidification of water and ORP increased with the treatment time, with higher levels of reactive species and low pH associated with higher efficacy against microorganisms. A specific range of concentration of reactive species must be achieved to reach the almost complete inactivation of the analysed microorganisms. Furthermore, the potential of PAW as an innovative irrigation medium to enhance growth and defence responses in tomato seedlings was investigated. PAW-irrigated seedlings exhibited significant growth enhancement compared to those receiving conventional fertilization. Increased levels of antioxidant molecules and pigments suggest improved photosynthetic activity and stress tolerance. Gene expression analysis showed up-regulation of defence genes in PAW-treated plants post infection with Tomato mottle mosaic virus. Plasma-Activated Fog (PAF) was evaluated as a new alternative technology for fruit decontamination against postharvest fungal pathogens and pesticide residues in fruits. PAF was generated using VDBD and applied to evaluate the in vitro effect on conidial germination of major fungal postharvest pathogens. For most of the species, the complete spore inactivation was obtained after 3-5 min of exposure. The efficacy of PAF against fungal rots was assessed on table grape and strawberry, revealing a significant reduction in the percentage of symptomatic fruits exposed to 10 min of treatment. The activation of defence responses in strawberry fruits exposed to the treatments was revealed by whole transcriptome analysis. PAF treatments also reduced pesticide residues on grape bunches and strawberry fruits.
Il plasma di bassa temperatura (LTP) è proposto come una nuova tecnologia verde per un'agricoltura sicura e sostenibile. È composto da elettroni, ioni, radicali, specie chimiche stabili e a breve vita, come le specie reattive dell'ossigeno e dell'azoto (RONS), e radiazioni ultraviolette. Nella Tesi sono stati studiati gli effetti delle applicazioni dirette e indirette del plasma. È stata valutata l'efficacia di una scarica di volume a barriera dielettrica (VDBD) per inibizione della germinazione conidica in diverse specie di funghi fitopatogeni, varie condizioni di scarica e composizione del substrato. L'efficacia d’inibizione è stata influenzata dalla tensione applicata, che riflette principalmente l'uniformità del trattamento, aumentando con la durata del trattamento e diminuendo con la complessità delle spore fungine. L'inibizione su diversi substrati agarizzati contenenti destrosio o estratto di malto è stata influenzata dalla complessità e dalla composizione del substrato stesso. Queste differenze si sono tradotte in una diversa risposta al campo elettrico applicato, influenzando la generazione e l'uniformità del plasma. Le differenze di efficacia tra le diverse specie fungine analizzate potrebbero essere legate alla struttura e alla composizione della parete cellulare del fungo. Per questo, mutanti albini di Botrytis cinerea e Aspergillus carbonarius sono stati utilizzati per esplorare il ruolo protettivo della melanina in trattamenti al plasma, mostrando una maggiore sensibilità dei mutanti rispetto ai ceppi wild-type melanizzati. L'efficacia della VDBD nell'attività di decontaminazione è stata testata anche su semi di orzo artificialmente inoculati con diverse specie di Fusarium. I semi inoculati sono stati esposti a una scarica a barriera in aria sintetica, aria umida e ossigeno puro, con diversi tempi di esposizione, ottenendo la migliore condizione per la decontaminazione dei semi, preservandone la germinabilità. Le applicazioni dell'acqua attivata dal plasma (PAW) hanno acquisito notevole interesse per l’ampio e facile utilizzo in agricoltura e nell'industria agroalimentare. La PAW generata tramite SDBD è stata utilizzata come mezzo di decontaminazione contro funghi e batteri. Sono state valutate la concentrazione di specie reattive, il pH e l’ORP (potenziale di ossido-riduzione). La concentrazione di specie reattive, l'acidificazione dell'acqua e l'ORP sono aumentati con l’aumentare del tempo di trattamento, raggiungendo una maggiore efficacia di decontaminazione. È stato studiato, inoltre, il potenziale della PAW come mezzo di irrigazione innovativo per migliorare la crescita e le risposte di difesa delle piantine di pomodoro. Le piantine irrigate con PAW hanno mostrato un significativo miglioramento della crescita rispetto a quelle sottoposte a fertilizzazione convenzionale. L'aumento dei livelli di molecole e pigmenti antiossidanti suggerisce un miglioramento dell'attività fotosintetica e della tolleranza a stress. L'analisi dell'espressione genica ha mostrato una sovraespressione di geni di difesa nelle piante trattate con PAW dopo l'infezione con il Tomato mottle mosaic virus. Sono stati valutati l’attività decontaminante della nebbia attivata dal plasma (PAF) nei confronti di patogeni fungini del post-raccolta e l’abbattimento di residui di pesticidi su prodotti ortofrutticoli. La PAF è stata generata utilizzando una VDBD e applicata per valutare l'effetto in vitro sulla germinazione conidica. Per la maggior parte delle specie, la completa inattivazione delle spore è stata ottenuta dopo 3-5 minuti di esposizione al plasma. Frutti esposti a 10 minuti di trattamento hanno mostrato una riduzione di marciumi, su uva da tavola e frutti di fragole. L'attivazione delle risposte di difesa in frutti di fragole esposti a trattamento è stata valutata mediante un’analisi dell'intero trascrittoma.
Il Plasma freddo come tecnologia innovativa nelle strategie di protezione integrata delle colture e dei prodotti vegetali
ROTONDO, Palma Rosa
2025
Abstract
Low-temperature plasma (LTP) is proposed as a new green technology for safe and sustainable agriculture. Atmospheric air plasma consists of electrons, ions, radicals, stable and short living products, such as reactive oxygen and nitrogen species (RONS), and ultraviolet radiation. In the present Thesis, the effects of both direct and indirect applications of atmospheric air LTP for microbial inactivation were investigated. The effectiveness of Volume Dielectric Barrier Discharge (VDBD) was evaluated on the direct inhibition of conidial germination in five different species of phytopathogenic fungi, various discharge conditions, and medium composition. The inhibitory effect was influenced by the applied voltage, which mainly reflects the uniformity of the treatment, increased with treatment duration and decreased with fungal spore complexity. Inhibition on different agarized media containing dextrose or malt extract was influenced by the complexity and composition of the medium. These differences translated into a different response to the applied electrical field, influencing plasma generation and uniformity. Differences among different species could be related to the fungal cell wall thickness, structure and composition. In this work, albino mutants of Botrytis cinerea and Aspergillus carbonarius were used to explore the protective role of fungal melanin on sensitivity to plasma exposure, with mutants showing higher sensitivity to treatments compared to the melanized wild-type strains. The effectiveness of VDBD in decontamination activity was also tested on barley seeds artificially inoculated with different Fusarium species. Inoculated seeds were exposed to a barrier discharge in synthetic air, humid air, and pure oxygen, at different exposure times, in the attempt to investigate the better requisite for seed decontamination while preserving seed germinability/viability. Applications of Plasma Activated Water (PAW) has gained more interest showing its wide and easily usage in agriculture and agrifood industry. PAW generated through SDBD was used as decontaminating medium against fungi and bacteria. Physicochemical properties of PAW were assessed in terms of concentration of reactive species, pH, and ORP (Oxidation-Reduction Potential). The concentration of reactive species and acidification of water and ORP increased with the treatment time, with higher levels of reactive species and low pH associated with higher efficacy against microorganisms. A specific range of concentration of reactive species must be achieved to reach the almost complete inactivation of the analysed microorganisms. Furthermore, the potential of PAW as an innovative irrigation medium to enhance growth and defence responses in tomato seedlings was investigated. PAW-irrigated seedlings exhibited significant growth enhancement compared to those receiving conventional fertilization. Increased levels of antioxidant molecules and pigments suggest improved photosynthetic activity and stress tolerance. Gene expression analysis showed up-regulation of defence genes in PAW-treated plants post infection with Tomato mottle mosaic virus. Plasma-Activated Fog (PAF) was evaluated as a new alternative technology for fruit decontamination against postharvest fungal pathogens and pesticide residues in fruits. PAF was generated using VDBD and applied to evaluate the in vitro effect on conidial germination of major fungal postharvest pathogens. For most of the species, the complete spore inactivation was obtained after 3-5 min of exposure. The efficacy of PAF against fungal rots was assessed on table grape and strawberry, revealing a significant reduction in the percentage of symptomatic fruits exposed to 10 min of treatment. The activation of defence responses in strawberry fruits exposed to the treatments was revealed by whole transcriptome analysis. PAF treatments also reduced pesticide residues on grape bunches and strawberry fruits.File | Dimensione | Formato | |
---|---|---|---|
Tesi Rotondo_A con frontespizio firmato-signed.pdf
embargo fino al 18/02/2026
Dimensione
8.32 MB
Formato
Adobe PDF
|
8.32 MB | Adobe PDF | |
Tesi Rotondo_A con frontespizio firmato-signed_1.pdf
embargo fino al 18/02/2026
Dimensione
8.32 MB
Formato
Adobe PDF
|
8.32 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/210874
URN:NBN:IT:UNIBA-210874