Antimicrobial resistance (AMR) is a critical global health challenge, compromising the efficacy of antibiotics and threatening both human and animal health. The rise of multidrug-resistant (MDR) bacteria compromises the efficacy of treatments for infections in humans and animals, leading to prolonged illnesses, increased mortality, and substantial economic burdens. Companion animals are increasingly recognized as reservoirs and potential sources of antimicrobial-resistant pathogens, contributing to the dissemination of resistance genes across ecosystems and posing a zoonotic risk. Understanding the prevalence, genetic mechanisms, and risk factors associated with AMR in dogs and cats is essential for the development of effective control strategies within a One Health approach. This thesis primarily focused on fecal shedding of extended-spectrum β-lactamase (ESBL)-, AmpC-, and carbapenemase-producing Escherichia coli, considered a key indicator of antimicrobial resistance in bacterial populations. Fecal samples from dogs and cats, including both pets and stray animals were investigated for the presence, genetic determinants, and associated risk factors of these bacteria. An additional investigation focused on dogs with urinary tract infections and analyzed ESBL-, AmpC-, and carbapenemase-producing E. coli as well as Klebsiella pneumoniae, a clinically significant pathogen often linked to resistance to the highest-priority critically important antimicrobials, along with other AMR mechanisms such as biofilm formation in these bacteria isolated from urinary samples. This thesis is based on four studies. The first study focused on cats, which have been studied less frequently than dogs, and investigated the presence of ESBL/AmpC-producing E. coli in both pet and stray cats. Fecal samples from 97 cats revealed that six (6.2%) carried these resistant bacteria. Genetic analysis detected blaCTX-M in all isolates, along with blaTEM (83.3%), blaSHV (16.7%), and chromosomal AmpC overexpression (1%). All isolates were multi-drug resistant (MDR). Statistical analysis demonstrated significant associations between ESBL/AmpC carriage and unhealthy status or previous antibiotic therapy, underscoring the potential role of cats as reservoirs for resistant bacteria. The second study focused exclusively on stray cats and included the study of carbapenemase-producing E. coli, due to their importance according to the One Health concept. Among the 94 stray cats analyzed, 18 (19.1%) tested positive for ESBL-/AmpC-/carbapenemase-producing E. coli. Notably, besides ESBL-/AmpC-producing E. coli, this study showed the presence of carbapenemase genes blaNDM and blaOXA-48 in seven (7.4%) samples. Among the isolates analyzed, 17 (94.4%) were identified as MDR. Hospitalization, prior antibiotic treatment, and unhealthy status were identified as significant risk factors. Moreover, ESBL-producing E. coli were detected in healthy stray cats which had not been hospitalized and had likely not been previously treated. Overall results highlight the complex epidemiology of AMR in stray animals suggesting the need for further investigation on the source of infection also focusing on environmental contamination. Carbapenemase-producing E. coli fecal carriage was further investigated in the third study that focused on dogs, in which carbapenemase-producing bacteria were less frequently studied. The fecal carriage of ESBL-/AmpC-/carbapenemase-producing E. coli was detected in 14/100 (14%) dogs, with 92.9% of isolates exhibiting MDR. Genetic analysis identified blaCTX-M in ESBL-producing isolates, blaCMY-2 in AmpC-producing isolates, and blaOXA-48 in carbapenemase-producing E. coli. Antibiotic treatment was confirmed as a significant risk factor for fecal shedding of these bacteria, emphasizing the need for antimicrobial stewardship in veterinary medicine. The fourth study investigated AMR bacteria in dogs with bacterial urinary tract infections (UTIs) focusing on the detection of ESBL-/AmpC-/carbapenemase-producing E. coli and K. pneumoniae, including evaluation of biofilm production of isolates, a factor that contributes to bacterial persistence and resistance. Among 133 urine samples analyzed, 53 (39.8%) were culture-positive. E. coli was the predominant pathogen (28; 21.1%) and six (4.5%) samples tested positive for K. pneumoniae. ESBL production, driven by blaCTX-M group 1, was detected in 4/34 (11.8%) E. coli/K. pneumoniae isolates and was significantly associated with K. pneumoniae. Furthermore, 11 (32.4%) isolates exhibited MDR. Biofilm formation was observed in 23 (67.6%) isolates, with moderate biofilm production significantly associated with K. pneumoniae. These findings emphasize the need for in vitro susceptibility testing and careful antibiotic use in treating canine UTIs. Overall, these studies underline the critical role of companion animals in the spread of antimicrobial-resistant bacteria. The detection of MDR and carbapenemase-producing E. coli is of concern and reinforces the need for enhanced surveillance programs and antimicrobial stewardship within a One Health framework, evaluating the risk of transmission to humans due to the close interaction of pets with their owners. Addressing AMR in companion animals is essential to safeguard both veterinary and public health, reinforcing the need for a collaborative One Health approach.
La resistenza antimicrobica (AMR) rappresenta una delle minacce più critiche per la salute globale, che compromette l'efficacia degli antibiotici e minaccia la salute sia umana che animale. L'aumento di batteri multiresistenti (MDR) mina l'efficacia dei trattamenti per le infezioni negli esseri umani e negli animali, determinando un prolungamento delle malattie, un aumento della mortalità e notevoli costi economici. Gli animali da compagnia sono sempre più riconosciuti come serbatoi e potenziali fonti di patogeni resistenti agli antimicrobici, contribuendo alla diffusione di geni di resistenza negli ecosistemi e rappresentando un rischio zoonotico. Comprendere la prevalenza, i meccanismi genetici e i fattori di rischio associati all'AMR in cani e gatti è essenziale per sviluppare strategie di controllo efficaci nell'ambito dell'approccio One Health. Questa tesi si è concentrata principalmente sull’eliminazione fecale di Escherichia coli produttori di β-lattamasi a spettro esteso (ESBL), AmpC e carbapenemasi, considerati indicatori chiave della resistenza antimicrobica nelle popolazioni batteriche. Campioni fecali di cani e gatti, sia domestici che randagi, sono stati analizzati per individuare la presenza, i meccanismi genetici e i fattori di rischio associati a questi batteri. Inoltre, è stata condotta un’indagine su cani affetti da infezioni del tratto urinario, analizzando la produzione di ESBL, AmpC e carbapenemasi in E. coli e Klebsiella pneumoniae. Quest’ultimo è un patogeno clinicamente significativo spesso associato a resistenza agli antimicrobici di massima priorità e ad altri meccanismi di resistenza come la produzione di biofilm nei batteri isolati da campioni urinari. La tesi si basa su quattro studi. Il primo studio si è concentrato sui gatti, che sono stati studiati meno frequentemnte rispetto ai cani, e ha indagato la presenza di E. coli produttori di ESBL/AmpC in gatti domestici e randagi. L’analisi su campioni fecali di 97 gatti ha evidenziato sei (6.2%) campioni positivi per questi batteri. L'analisi genetica ha identificato blaCTX-M in tutti gli isolati, insieme a blaTEM (83.3%), blaSHV (16.7%) e la sovraespressione cromosomica di AmpC (1%). Tutti gli isolati erano MDR. L'analisi statistica ha dimostrato associazioni significative tra la presenza di E. coli produttori di ESBL/AmpC e lo stato di animale malato o la precedente terapia antibiotica, sottolineando il potenziale ruolo dei gatti come serbatoi di batteri resistenti. Il secondo studio si è concentrato esclusivamente sui gatti randagi e ha incluso lo studio di E. coli produttori di carbapenemasi, a causa della loro importanza secondo il concetto One Health. Tra i 94 gatti randagi analizzati, 18 (19.1%) sono risultati positivi per E. coli produttori di ESBL-/AmpC-/carbapenemasi. In particolare, oltre a E. coli produttori di ESBL-/AmpC, questo studio ha mostrato la presenza di geni codificanti per carbapenemeasi, blaNDM e blaOXA-48, in sette (7.4%) campioni. Tra gli isolati analizzati, 17 (94,4%) sono stati identificati come MDR. L’ospedalizzazione, il precedente trattamento antibiotico e lo stato di malattia sono stati identificati come fattori di rischio significativi. Inoltre, E. coli produttore di ESBL è stato rilevato in gatti randagi sani che non erano stati ricoverati in ospedale e che probabilmente non erano stati trattati in precedenza. I risultati complessivi evidenziano la complessa epidemiologia dell'AMR negli animali randagi, suggerendo la necessità di ulteriori indagini sulla fonte dell'infezione, concentrandosi anche sulla contaminazione ambientale. E. coli produttori di carbapenemasi sono stati ulteriormente indagati nel terzo studio incentrato sui cani, in cui i batteri produttori di carbapenemasi sono stati studiati meno frequentemente. È stato valutata l’eliminazione fecale di E. coli produttore di ESBL/AmpC/carbapenemasi e tra i 100 cani analizzati, 14 (14%) sono risultati positivi per questi batteri resistenti, con il 92.9% degli isolati MDR. L'analisi genetica ha identificato blaCTX-M negli isolati produttori di ESBL, blaCMY-2 negli isolati produttori di AmpC e blaOXA-48 nei E. coli produttori di carbapenemasi. Il trattamento antibiotico è risultato un fattore di rischio significativo per la diffusione fecale di questi batteri, sottolineando la necessità di un corretto e prudente uso degli antibiotici in medicina veterinaria. Il quarto studio ha esaminato i batteri AMR nei cani con infezioni batteriche del trattato urinario (UTI) concentrandosi sul rilevamento di E. coli e K. pneumoniae produttori di ESBL/AmpC/carbapenemasi, inclusa la valutazione della produzione di biofilm degli isolati, un fattore che contribuisce alla persistenza e alla resistenza batterica. Tra i 133 campioni di urina analizzati, 53 (39.8%) sono risultati positivi alla coltura microbiologica, con E. coli identificato come patogeno predominante (28; 21,1%) e sei campioni (4,5%) positivi per K. pneumoniae. La produzione di ESBL, determinata dal gene blaCTX-M del gruppo 1, è stata rilevata in 4/34 (11.8%) E. coli/K. pneumoniae isolati ed è stata significativamente associata alla presenza di K. pneumoniae. Inoltre, 11 (32.4%) isolati hanno mostrato MDR. La formazione di biofilm è stata osservata in 23 (67.6%) isolati, con una produzione di biofilm moderata significativamente associata a K. pneumoniae. Questi risultati sottolineano la necessità dei test di sensibilità in vitro e di un uso prudente degli antibiotici nel trattamento delle UTI nei cani. In generale, questi studi sottolineano il ruolo critico degli animali da compagnia nella diffusione di batteri resistenti agli antimicrobici. Il rilevamento di E. coli MDR e produttore di carbapenemasi è motivo di preoccupazione e rafforza la necessità di programmi di sorveglianza e di una gestione responsabile degli antimicrobici nell'ambito di un approccio One Health, valutando il rischio di trasmissione all’uomo a causa della stretta interazione tra gli animali domestici e i loro proprietari. Combattere la resistenza antimicrobica negli animali da compagnia è essenziale per salvaguardare sia la salute veterinaria che quella pubblica, rafforzando la necessità di un approccio One Health.
EXTENDED-SPECTRUM Β-LACTAMASE-, AMPC- AND CARBAPENEMASE-PRODUCING BACTERIA IN DOGS AND CATS
FACCHIN, ALESSIA
2025
Abstract
Antimicrobial resistance (AMR) is a critical global health challenge, compromising the efficacy of antibiotics and threatening both human and animal health. The rise of multidrug-resistant (MDR) bacteria compromises the efficacy of treatments for infections in humans and animals, leading to prolonged illnesses, increased mortality, and substantial economic burdens. Companion animals are increasingly recognized as reservoirs and potential sources of antimicrobial-resistant pathogens, contributing to the dissemination of resistance genes across ecosystems and posing a zoonotic risk. Understanding the prevalence, genetic mechanisms, and risk factors associated with AMR in dogs and cats is essential for the development of effective control strategies within a One Health approach. This thesis primarily focused on fecal shedding of extended-spectrum β-lactamase (ESBL)-, AmpC-, and carbapenemase-producing Escherichia coli, considered a key indicator of antimicrobial resistance in bacterial populations. Fecal samples from dogs and cats, including both pets and stray animals were investigated for the presence, genetic determinants, and associated risk factors of these bacteria. An additional investigation focused on dogs with urinary tract infections and analyzed ESBL-, AmpC-, and carbapenemase-producing E. coli as well as Klebsiella pneumoniae, a clinically significant pathogen often linked to resistance to the highest-priority critically important antimicrobials, along with other AMR mechanisms such as biofilm formation in these bacteria isolated from urinary samples. This thesis is based on four studies. The first study focused on cats, which have been studied less frequently than dogs, and investigated the presence of ESBL/AmpC-producing E. coli in both pet and stray cats. Fecal samples from 97 cats revealed that six (6.2%) carried these resistant bacteria. Genetic analysis detected blaCTX-M in all isolates, along with blaTEM (83.3%), blaSHV (16.7%), and chromosomal AmpC overexpression (1%). All isolates were multi-drug resistant (MDR). Statistical analysis demonstrated significant associations between ESBL/AmpC carriage and unhealthy status or previous antibiotic therapy, underscoring the potential role of cats as reservoirs for resistant bacteria. The second study focused exclusively on stray cats and included the study of carbapenemase-producing E. coli, due to their importance according to the One Health concept. Among the 94 stray cats analyzed, 18 (19.1%) tested positive for ESBL-/AmpC-/carbapenemase-producing E. coli. Notably, besides ESBL-/AmpC-producing E. coli, this study showed the presence of carbapenemase genes blaNDM and blaOXA-48 in seven (7.4%) samples. Among the isolates analyzed, 17 (94.4%) were identified as MDR. Hospitalization, prior antibiotic treatment, and unhealthy status were identified as significant risk factors. Moreover, ESBL-producing E. coli were detected in healthy stray cats which had not been hospitalized and had likely not been previously treated. Overall results highlight the complex epidemiology of AMR in stray animals suggesting the need for further investigation on the source of infection also focusing on environmental contamination. Carbapenemase-producing E. coli fecal carriage was further investigated in the third study that focused on dogs, in which carbapenemase-producing bacteria were less frequently studied. The fecal carriage of ESBL-/AmpC-/carbapenemase-producing E. coli was detected in 14/100 (14%) dogs, with 92.9% of isolates exhibiting MDR. Genetic analysis identified blaCTX-M in ESBL-producing isolates, blaCMY-2 in AmpC-producing isolates, and blaOXA-48 in carbapenemase-producing E. coli. Antibiotic treatment was confirmed as a significant risk factor for fecal shedding of these bacteria, emphasizing the need for antimicrobial stewardship in veterinary medicine. The fourth study investigated AMR bacteria in dogs with bacterial urinary tract infections (UTIs) focusing on the detection of ESBL-/AmpC-/carbapenemase-producing E. coli and K. pneumoniae, including evaluation of biofilm production of isolates, a factor that contributes to bacterial persistence and resistance. Among 133 urine samples analyzed, 53 (39.8%) were culture-positive. E. coli was the predominant pathogen (28; 21.1%) and six (4.5%) samples tested positive for K. pneumoniae. ESBL production, driven by blaCTX-M group 1, was detected in 4/34 (11.8%) E. coli/K. pneumoniae isolates and was significantly associated with K. pneumoniae. Furthermore, 11 (32.4%) isolates exhibited MDR. Biofilm formation was observed in 23 (67.6%) isolates, with moderate biofilm production significantly associated with K. pneumoniae. These findings emphasize the need for in vitro susceptibility testing and careful antibiotic use in treating canine UTIs. Overall, these studies underline the critical role of companion animals in the spread of antimicrobial-resistant bacteria. The detection of MDR and carbapenemase-producing E. coli is of concern and reinforces the need for enhanced surveillance programs and antimicrobial stewardship within a One Health framework, evaluating the risk of transmission to humans due to the close interaction of pets with their owners. Addressing AMR in companion animals is essential to safeguard both veterinary and public health, reinforcing the need for a collaborative One Health approach.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R13577.pdf
embargo fino al 14/11/2026
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/211158
URN:NBN:IT:UNIMI-211158